
Eurographics Conference on Visualization (EuroVis) 2015
H. Carr, K.-L. Ma, and G. Santucci
(Guest Editors)

Volume 34 (2015), Number 3

Towards a smooth design process for static communicative
node-link diagrams

Andre Suslik Spritzer1, Jeremy Boy2,3, Pierre Dragicevic2, Jean-Daniel Fekete2 and Carla Maria Dal Sasso Freitas1

1Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil
2INRIA, France

3Telecom ParisTech, France

Abstract
Node-link infographics are visually very rich and can communicate messages effectively, but can be very difficult
to create, often involving a painstaking and artisanal process. In this paper we present an investigation of node-
link visualizations for communication and how to better support their creation. We begin by breaking down these
images into their basic elements and analyzing how they are created. We then present a set of techniques aimed
at improving the creation workflow by bringing more flexibility and power to users, letting them manipulate all
aspects of a node-link diagram (layout, visual attributes, etc.) while taking into account the context in which it
will appear. These techniques were implemented in a proof-of-concept prototype called GraphCoiffure, which was
designed as an intermediary step between graph drawing/editing software and image authoring applications. We
describe how GraphCoiffure improves the workflow and illustrate its benefits through practical examples.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces (GUI)

1. Introduction

Static node-link diagrams are an effective way of commu-
nicating information, which researchers use to present their
findings, journalists to illustrate their stories, and artists to
express themselves. They can appear on scientific posters,
or in textbooks, papers, newspapers, and magazines; and
they come in many very distinct styles. However, creating
such communicative node-link diagrams is not an easy task.
The contexts in which they appear impose many constraints,
ranging from stylistic choices (i.e., the image’s “look-and-
feel”) to medium limitations (e.g., size, color palette, etc.);
and whoever creates them must have a clear understanding
of the underlying data, as well as of the message that the dia-
gram should convey. This requires skills that a single person
may not necessarily possess.

Currently available approaches for creating communica-
tive node-link diagrams are problematic as they tend to be
too labor-intensive, time-consuming, or inflexible. For ex-
ample, creating a node-link diagram from scratch in a graph-
ics editor can be painstaking and is only feasible for graphs
of very limited size—such software only deal with pixels
and/or vectors, and are agnostic to the data. As an alterna-

tive, analysis-centric software can be used, but these rarely
allow the necessary flexibility to conform to the aesthetic re-
quirements of communication-centered contexts. Similarly,
graph editors and graph drawing applications can produce
nice-looking visualizations, but they too lack flexibility for
visual encoding and layout, and are truly practical only if
the visualizations can be used “as is.” A final alternative is to
code visualizations, but this is impractical, time-consuming,
and requires programming skills, which not everyone has.

In this paper, we lay the groundwork for techniques and
applications aimed at supporting the creation of custom
static communicative node-link diagrams, with an emphasis
on tools for interactive layout manipulation. Our contribu-
tions are as follows:

• a breakdown of static node-link diagrams into their basic
elements from a graphic design perspective, based on a
thorough study of representative example images;

• an analysis of the workflow of designers/storytellers who
create these images;

• a set of high-level tasks that may need to be performed in
order to create the diagrams;

• a set of techniques for interactive layout manipulation that

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

take into account the graph and its associated data, as well
as the visualization’s semantics and context of use;

• a stylesheet-based technique for the definition of a node-
link diagram’s visual attributes;

• a discussion of how the proposed techniques fit into and
enhance the workflow of creators of node-link visualiza-
tions for communication;

Moreover, we describe two usage scenarios showing in
practice how our approach can improve the workflow and
give users more possibilities.

2. Related work

2.1. Communicative node-link diagrams

There are many network visualizations depicting varied top-
ics such as the posters sold by Pop Chart Labs [Pop14] and
curated by Visual Complexity [Lim13, Lim14]. All of these
visualizations have a common denominator, which is their
focus on communication and the attempt to make the graphs
not only meaningful, but also beautiful.

To better understand how such communicative node-
link diagrams are created, we interviewed sociologist
Dana Diminescu, who leads the eDiasporas project,
which studies specific interactions among “migrant sites”
(or e-diasporas)—websites created or managed by mi-
grants and/or significantly related to migration. The
project involves a series of infographic booklet/poster hy-
brids [Dim12b] and their web counterparts [Dim12a].

Dana and her team first created the diagrams by loading
the graphs they had built into graph editor Gephi, where
they applied a force-directed layout and customized some
visual attributes, making edges curved and mapping degrees
to node radii and tags to colors. The diagrams were then ex-
ported as SVGs and touched up on Adobe Illustrator (with-
out changing the layout) by independent graphic designers,
who finally integrated them into the posters.

The end-results looked good (Figs. 1 and 2), but Dana and
her team felt somewhat frustrated. The chosen layout algo-
rithm caused some problems for the print version due to the
limited space available for each graph: some nodes ended
up too far from the rest of the graph and larger graphs often
needed to be reduced or cropped to fit into their areas. Some
layouts were also very dense, making it difficult for view-
ers to understand the structure of the graphs. More problems
came from the impossibility of planning graph layouts for
their specific page layout: descriptive text often had to be
placed over parts of the diagrams and there was frequently
either too little or too much whitespace.

Beyond these specific technical issues, it seemed the main
frustration came from a difference of perspective and an in-
ability of going back and forth between design stages. The
graphic designers had most likely focused on more global

Figure 1: Close-up of an e-diaspora graph, as seen on
the print version of Dana Diminescu’s e-Diasporas project
[Dim12b].

Figure 2: A page of the print version of Dana Diminescu’s
e-Diasporas project [Dim12b]. The page is organized as a
matrix of e-diaspora graphs.

visual communication aspects, while the sociologists had
mainly focused on the legibility of each individual graph.

According to Baur [Bau13], a graphic designer tries to
solve problems of identification, orientation, and informa-
tion, and, to this end, uses the design of visual elements just
as much as any other form of creative expression that is nec-
essary for the production of a coherent presentation. Here,
identification concerns the more or less immediate compre-
hension of the major function or purpose a given object (in
this case, the printed document was supposed to commu-
nicate information about social sciences); orientation con-
cerns the signs on the surface of that object that commu-
nicate how the object works (in this case, the way in which
the document should be read); and information concerns the
content itself, i.e., what is being communicated (in this case,
the “information” conveyed by the graphs and the text). Put
simply, these three levels could be respectively translated
into the questions: “What is this?”, “How does it work?”,
and “What does it mean?” This reveals that, from a graphic

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

design perspective, there is a clear hierarchy among these
levels, prioritizing identification and orientation over infor-
mation. This conflicts directly with the hierarchy considered
by researchers, which emphasizes information. In the case
of e-diasporas, this clash of perspectives was exacerbated by
the fact that once the work was done, it was impossible to
go back, since the cost would have been too great , as the
diagrams would have had to be remade almost from scratch.

In this paper, we focus on bridging these different per-
spectives. Our main motivation is to develop a tool that will
help researchers, or any other “content providers,” modify a
graph at any moment to bring forward the information aspect
of the communication, while allowing graphic designers to
bring forward the identification and orientation aspects of
the final document.

2.2. Graph editors and graph drawing software

Gephi [BHJ09] and yEd [yEd14] are free graph editors that
let users create node-link diagrams. Users can apply a lay-
out algorithm and change visual attributes such as node and
edge color and edge type (e.g., curved or straight). Gephi al-
lows for limited layout modification by letting users create
metanodes from node selections, but it does not have much
support for different node shapes and edge styles (e.g., dot-
ted, dashed, different arrowheads, etc.). yEd, on the other
hand, allows for more customization of the visual attributes.
Both let users encode data such as computed metrics and
node/edge data attributes into visual attributes.

Cytoscape [SMO∗03] and NodeXL [SMFS∗10] are open-
source platforms for network analysis. They let users cus-
tomize many visual attributes and support mapping data at-
tributes into visual attributes. Distinctive features of Cy-
toscape are its plug-in architecture and its support for more
layout options. NodeXL, in turn, is interesting for being
a Microsoft Excel template that also lets users create di-
agrams from social networking platforms like Twitter and
YouTube. As for layout manipulation, Cytoscape supports
nested graphs while NodeXL supports metanodes and allows
connected components to be separated by size.

Tulip [Aub04] is a framework for graph visualization and
analysis. Based on a plug-in architecture, it was designed
to support developers in creating new tools and also in-
cludes a GUI that provides access to its already implemented
set of metrics, algorithms, and visualization tools (includ-
ing several layout algorithms). Users can modify the visual
encoding by mapping metrics to color and size, choosing
among predefined node shapes, and making the edge color
and thickness be interpolated from the nodes. Layouts can
be modified by manually moving nodes, editing edge bends,
and creating metanodes.

Graphviz [GN00] is a software package and library for
graph drawing, featuring many layout algorithms (includ-
ing the flagship dot) and giving users many choices in how
nodes and edges are drawn (i.e., shape, color, style, etc.). It

is largely based on DOT, a graph description language, and
is run from the command line, outputting images and thus
not supporting interactive layout manipulation. The graph,
its layout, and visual style are all defined in the same DOT
script, sometimes compromising reuse of a diagram’s style.

Also worth a mention is the web-based Visual Inves-
tigative Scenarios, or VIS (https://vis.occrp.org),
which lets journalists create infographics of business and
criminal networks. It is effective within its journalistic con-
text, but far less visually flexible than the others.

One common drawback of all of these tools is that none
provides much support for layout manipulation. After choos-
ing a layout algorithm and setting its parameters, there is
not much users can do beyond moving individual nodes
or grouping nodes together as metanodes. These tools also
provide a very limited degree of visual customization com-
pared to specialized graphics editors like Adobe Illustrator
or Adobe Photoshop, which give users complete control of
the images through many tools that range from image pro-
cessing algorithms to tools for interactive drawing and image
manipulation. While visually very powerful, though, these
editors are not ideal for creating visualizations, as they only
process pixels and vectors, providing no link to the underly-
ing data, with all mappings having to be made by hand.

2.3. Interactive layout manipulation

Although graph drawing techniques like those described
by Tamassia [Tam14] can be used to generate high-quality
node-link layouts from graph topologies, this is not always
enough. Some users may feel the need to manipulate layouts
to make graphs more meaningful or understandable.

Some of the techniques that provide more substantial
layout manipulation focus on the repositioning of nodes.
McGuffin and Jurisica’s approach lets users modify a node-
link diagram by applying a chosen layout algorithm on a
selected subset of nodes [MJ09]. In contrast, MagnetViz
[SF12] allows users to reorganize the entire diagram through
virtual magnets that attract nodes.

Other techniques focus on changing how edges are drawn.
Riche et al. [RDLC12] have identified six dimensions for
such techniques based on characteristics of user interaction.
They illustrate these dimensions by describing four fami-
lies of techniques, namely, interactive bundling, interactive
edge fanning, edge magnets, and interactive edge legends.
Other techniques that let users modify edges include Edge-
Lens [WCG03], EdgePlucking [WC07], and Schmidt et al.’s
techniques for multi-touch surfaces [SNDC10].

All the techniques mentioned above were designed with
a focus on the exploration of graphs. While several are able
to export static images, they were not explicitly designed for
the creation of stand-alone visualizations and do not provide
enough flexibility for customizing graphs’ visual attributes.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

https://vis.occrp.org


A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

3. Elements of static communicative node-link diagrams

To better understand the components of communicative
node-link diagrams, we surveyed 203 diagrams, sorting
them into categories such as journalistic infographics, fun
infographics, works of art, hand-drawn, etc [SBD∗14]. De-
spite the graphs’ variety, we were able to identify in them
six distinct but interconnected components which we relate
to the different levels of graphic design (Sect. 2.1).

1. Information
The data is the graph that is being visualized, including
its topology and associated data attributes.
The message is what the diagram intends to communi-
cate. It can be factual (i.e., stick to the data), higher-level
(i.e., report non-trivial insights), or even go beyond the
data, ignoring it altogether (e.g., for use in art and design)
or being purposely inconsistent with it (e.g., to misinform
the audience about the data).

2. Orientation
The layout of a node-link diagram is the arrangement of
nodes in space and the routing of the edges (i.e., the path
of the edge from one node to another).
Presentation aids are accessory visual elements that en-
hance the diagram’s communicative power (e.g., annota-
tions, legends, grids, convex hulls, etc).

3. Identification
The visual attributes define the appearance of the el-
ements of the diagram (e.g., colors, node shapes, line
styles, label fonts, etc.). Along with the layout, they are
what gives a diagram a distinct style.
The communication context is how the diagram will be
used. This includes considerations such as the medium in
which it will appear (e.g., book, billboard, t-shirt, web-
site, etc.), its purpose (e.g., an illustration on a news arti-
cle, a whole-page infographic poster, a decorative work
of art, etc.), and its intended audience (e.g., scientists,
general public, children, etc.).

There may be intersections between these components, as
communicative node-link diagrams are dependent on both

Figure 3: Teresa Elms’ visualization of the lexical distance
between the languages of Europe [Elm08].

the message and the communication context, which in turn
are dependent on the layout and the visual attributes. For
example, diagrams meant for print may be subject to restric-
tions of space and color while having to conform with aes-
thetic requirements meant to give them a specific “look-and-
feel” (e.g., to make it congruent with the other elements of a
page or to give it a desired visual identity).

To illustrate these components, let us consider Teresa
Elms’ diagram of the lexical distance among European lan-
guages [Elm08] (Fig. 3). This is a typical diagram that can
be produced with the graph editors described in Sect. 2.2.
While quite effective on the information and orientation lev-
els, it clearly fails on the interpretation level. Indeed, data
and message are made quite clear, as nodes represent lan-
guages, which are grouped into visually distinct “families,”
and edges show how similar languages are to one another.
The layout allows for simple visual exploration of nodes and
links and labels and a legend provide clear presentation aids.
However, the nature of the data is quite abstract (languages)
and the visual attributes do not convey much semantic in-
formation about it. A reader who only looks at this graph
for a short instant (i.e., without taking the time to read all
the labels) will most probably not understand what the topic
is. Furthermore, the “look and feel” of this graph is quite
generic and would need some additional styling to suit a
specific communication context. Finally, integrating this di-
agram in a specific document would require shifting all other
elements in the document to fit around its overall rectangu-
lar shape, which may be challenging and sub-optimal when
designing a full page layout.

Based on our analysis of how static communicative node-
link diagrams are usually created (Sect. 2.1), on our study of
the 203 graphs, and on our breakdown of these graphs into
their essential components, we derived a set of high-level
tasks that users may need to perform in order to create such
diagrams. Some of these tasks can be performed with image
authoring programs and graph/diagram editors, while others
are unique to static communicative node-link diagrams and
are not directly supported by these programs. The tasks are:

• t1: Apply a graph layout algorithm on the diagram.
• t2: Manipulate the diagram’s layout to make it conform

to the communication context and to ensure it has the
intended aesthetics and adequately communicates the in-
tended message.

• t3: Manipulate the diagram’s visual attributes to make it
conform to the communication context and to ensure it
has the intended aesthetics and adequately communicates
the intended message.

• t4: Reproduce the style of another diagram (e.g., to create
a series of visualizations with the same “look-and-feel”).

• t5: Map information components into orientation compo-
nents (i.e., use the data and the message to affect both the
diagram’s layout and visual attributes).

• t6: Add presentation aids that make the diagrams easier

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

to read (e.g., annotations, highlights, convex hulls, visual
landmarks, legends, grids, background images, etc.).

With these tasks in mind, we designed a set of tech-
niques for creation and manipulation of static communica-
tive node-link diagrams and implemented them as a proof-
of-concept prototype named GraphCoiffure, which is in-
tended to bridge the gap between graphics editors and graph
drawing software.

4. GraphCoiffure

GraphCoiffure is a prototype tool for graph beautifica-
tion, i.e., for touching up a node-link diagram to enhance
its communicative power or to make it conform to desired
aesthetics. Here, we use the term “aesthetics” in a broader
sense than what is usual in the graph drawing commu-
nity [BETT99, WPCM02, BRSG07, PPBP10]—our concern
is not only to find nice-looking, easy to read positions for
nodes, but also to address the entire “look-and-feel” of a
diagram. This requires considering the different visual at-
tributes that compose a diagram (e.g., node shapes, colors,
label fonts, etc.).

Users can import diagrams created with graph editors and
graph drawing software into GraphCoiffure and “beautify”
them with the aid of: 1) a CSS-like stylesheet system, 2)
tools for interactive graph layout manipulation, and 3) page
layout schemas—these can help structure a layout for spe-
cific communication contexts. GraphCoiffure preserves all
visual mappings, which makes it easier to perform topology,
attribute, or context-based modifications. As such, we pro-
pose the following workflow:

• Before GraphCoiffure: 1) create/extract a graph; 2) de-
sign a page layout; and 3) design all desired node shapes
in a graphics editor.

• In GraphCoiffure: 1) import the graph; 2) define the vi-
sual attributes; 3) import the page; 4) touch up the layout;
5) add presentation aids; and 6) export the diagram.

• After GraphCoiffure: 1) add finishing touches in a
graphics editor; and 2) place the image on the page.

Note that these steps are not necessarily linear—users
may go back-and-forth between them, or conduct them in
a different order.

4.1. Touching up a graph with GraphCoiffure

In the following subsections, we illustrate GraphCoiffure’s
features by describing our personal reproduction of the lexi-
graph (Fig. 3). When first imported into GraphCoiffure, the
graph keeps its original layout and uses GraphCoiffure’s de-
fault visual attributes (as shown in Fig. 4a).

4.1.1. Using stylesheets to define visual attributes

GraphCoiffure uses a CSS-like stylesheet system to define
the look of nodes, edges, and presentation aids. Users can

Swe

Ukr

Ice

Fa

Ga

Cat

Lit

Pro

Dut

Hun

Pol

Bok

Por

Ger

Bre

Rm

NN

Spa

We

Srb
Rom

Dsh

Blr

Srd Svk

Alb

Ma

Cro

Rus

Slo

Fin

Grk

Ir

Lat

Ita

Bul

Fre

Eng

Cze

Fri

Glc

Sr

Est

(a) With GraphCoiffure’s default stylesheet.

Ga

Rom

Por

Est

Fa

Srd

Ita

Ice

Ukr

Dut

Alb

Pro

Spa

Bre

NN

Svk

Srb

Slo

Rus

Lit

Cro

Swe

Lat

Dsh

Ma

Ger

Blr

Fre

Glc

Fri

Sr

Eng

Cze

Fin

Bok

We

Rm

Cat

Grk

Bul

Ir

Hun

Pol

Celtic

Germanic

Finno-Ugric

Greek

Romance Albanian

Baltic

Slavic

(b) With a stylesheet reproducing the lexi-graph’s original style.

Figure 4: Reproducing the lexi-graph with GraphCoiffure.

customize visual attributes such as node shape, color, size,
stroke patterns, fill patterns, and fonts. We chose this ap-
proach instead of a more UI-based one because of the high
expressive power and reproducibility of stylesheets. These
effectively help with t3, t4, and t5, and are immediately ac-
cessible to users familiar with CSS, like graphic designers.
However, for other users, we acknowledge there may be a
short learning curve.

This approach is similar to Pietriga’s Graph Stylesheets
(GSS)—a stylesheet language for node-link representa-
tions of RDF (Resource Description Framework) models
of Semantic Web data [Pie06]. However, GraphCoiffure
stylesheets are based on standard CSS, with a similar syntax
and functionality; they also include several extra features,
like the possibility to directly map data attributes to visual
variables (e.g., number of speakers to color or size/scale),
and to use topology and data-based comparison operators
in a ruleset’s selector to specify which nodes or edges will
be affected (e.g., to make nodes of Romance language with
over 7 million speakers green). The shape of nodes can also
be modified with user-provided SVG images (if users don’t
specify a node shape, a default blue circle is used). Finally,
we chose to keep the manipulation of visual attributes sep-
arate from that of the layout, as nodes and edges can be re-
quired to keep the same “look and feel” across different di-
agrams (e.g., in a series of related graphs, such as different
“pictures” of a network evolving over time), while layouts
tend to be very specific to individual graphs.

Fig. 4b shows our styled reproduction of the lexi-graph;
the stylesheet we used took less than 20 minutes to write, and

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

(a) Original layout (b) Stretched (c) Rotated

Figure 5: Node group deformations of nodes representing
Germanic languages.

contains less than 100 lines of code—despite the significant
amount of information that needed to be encoded. The pro-
cess was very straightforward: we created rulesets for family
names, for ranges of number of speakers, for ranges of lex-
ical distances, and for the font of the annotations. We also
kept the default node shape.

4.1.2. Manipulating the layout

Besides standard click-and-drag actions, GraphCoiffure has
many tools for layout manipulation that were designed to
help with t1, t2, and t5. These tools are divided into two
categories: node group-based and physics-based. Many of
them are based on selections, so we will begin by explaining
how this can be done in GraphCoiffure.

4.1.2.1. Selection GraphCoiffure supports three types of
node selection: manual, topology-based, and attribute-based.
Manual selections are the standard click-to-select, control-
key + click to add selections, and click-and-drag to activate
rubberband selections. Filters can also be used to target spe-
cific types of objects (e.g., only nodes, only edges, etc.).

Topology-based selections take two steps: users first man-
ually select a group of nodes, then choose a topology-based
operation from a menu (select neighbors, add neighbors to
the current selection, select connected components).

Attribute-based selections use panels to select nodes or
edges based on data attributes and topological properties
(e.g., degree, connected component, etc.). These panels
show nodes and edges in a table that can be filtered—this
makes it easy, for instance, to select all languages of a given
family in the lexi-graph.

4.1.2.2. Node-group-based manipulation To make local-
ized layout manipulation easier, a node group can be cre-
ated from a selection of nodes. Groups are represented by
light gray bounding boxes around nodes, with a name (given
upon creation) displayed at the top-left corner. Users can
move groups by clicking and dragging, and can stretch and
rotate them by clicking and dragging on manipulator han-
dles. Stretching consists of a uniform or non-uniform scal-

ing of the nodes’ positions, while rotation rotates their po-
sitions around the center of the group’s bounding box. The
graph itself is treated as a special type of node group that
can also be scaled as a whole (users can toggle the op-
tion to scale the whole graph or only node positions on a
menu). Fig. 5 demonstrates node group deformations. Note
that edge groups can also be created, but they are not used for
layout modification. However, both edge and node groups
can be referenced in the stylesheets described in Sect. 4.1.1.

Users can also modify node groups with layout algo-
rithms, like random, circular, spectral, and force-directed
(Fig. 6a). These standard algorithms were chosen because
they were readily available in the library we used to imple-
ment GraphCoiffure (networkx [HSS08]), and we consid-
ered them enough for our proof-of-concept prototype. Other
algorithms can be easily added.

4.1.2.3. Physics-based tools GraphCoiffure includes an
interactive force-directed layout algorithm and two physics-
based tools for manipulation: a magnet and a repeller.

The interactive algorithm is a variation of Fruchterman-
Reingold [FR91] that keeps a physics engine running un-
til explicitly stopped, making the entire graph respond to
changes that happen when nodes are moved. This can be use-
ful to “model” or “smooth out” a layout, and can be applied
on the entire graph or on a chosen node group. This partic-
ular algorithm was chosen due to its straightforward imple-
mentation (the prototype being merely a proof-of-concept,
scalability was not a concern).

Magnets are based on the MagnetViz concept [SF12];
they apply an attraction force on a selection of nodes, which
reshapes the layout (Fig. 6b). This can be used to create a de-
sired aesthetic, to emphasize a particular subgraph, or even
to clean up a diagram (e.g., disentangle subgraphs/connected
components); and is particularly powerful when combined
with an interactive force-directed layout. Users can place
magnets anywhere on the workspace, and freely move them
around, while activating or deactivating them by double-
clicking on their icons. This changes the color to reflect
their status (green for active, red otherwise). The strength
of a magnet’s attraction force can be set with menu options
and keyboard shortcuts. Finally, when nodes move towards
a magnet, the underlying physics engine ensures that they do
not collide with each other.

Repellers move nodes away from an area delimited by the
repeller’s radius; they work both as a brush used to unclutter
dense regions and as a tool to establish “no-go” zones in the
workspace (Fig. 6c). A repeller’s radius can be determined
with menu options and keyboard shortcuts, and appears as a
dashed black circle around its icon. Like magnets, repellers
can be activated and deactivated by double-clicking.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

(a) Circular layout on a subgraph (b) A magnet in action. (c) Repeller used on the Germanic languages.

Figure 6: Manipulating lexi-graph’s layout

(a) The target page (in Pho-
toshop).

(b) The corresponding lay-
out schema.

(c) Scaling the lexi-graph
to fit the layout.

(d) The final page. (e) Variation: modifying
the layout to adapt to a
movable page element.

Figure 7: Using page layout schemas.

4.1.3. Presentation aids

GraphCoiffure supports annotations as presentation aids
(t6); these are small blocks of text that can be placed any-
where on the workspace and styled with the stylesheet sys-
tem. Annotations can be attached to a graph as a whole,
or to specific node groups—when a group is moved or de-
formed, the annotation’s position is updated accordingly. We
use annotations in our styled reproduction of the lexi-graph
(Fig. 4b).

4.1.4. Page schemas

Whatever the final format (e.g., book, poster, website, etc.),
node-link diagrams often appear as one of several elements
on a page. This communication context may impose restric-
tions on the size and shape of the graph layout. To help users
plan a graph layout for a page layout (task t2), GraphCoif-
fure lets users import page layout schemas (Fig. 7).

A page layout schema is a design aid that can include
a grid and placeholders for the page’s different visual ele-
ments. The placeholders can be fixed (displayed in red on the
workspace), representing elements on the page that must re-
main in position; or movable (in blue), representing elements
that can be repositioned if necessary. Layout schemas are
loaded from formatted SVG files, in which grids are made up

of line objects with a “grid” class (i.e., class=“grid”); and
fixed and movable placeholders are rect objects with “fixed-
Block” and “movableBlock” classes, respectively.

4.2. Usage scenarios

To further illustrate the use of GraphCoiffure, and the work-
flow that goes with it, we now present the design of three
other “beautified” diagrams. The first uses the lexi-graph and
focuses on making it look like the infographic of Fig. 8a. The
second and third are two original diagrams we created of a
network of movies.

4.2.1. Reproducing a style

The infographic in Fig. 8a was made by former company
Loku; it shows different types of coffee and the different per-
sonalities of the people who drink them. In this subsection,
we describe how we reproduced this diagrams style and ap-
plied it to the lexi-graph using GraphCoiffure.

As mentioned in our proposed workflow, we began out-
side GraphCoiffure by creating a page layout schema based
on the coffee diagram’s page. We also created the node shape
SVGs in Adobe Illustrator, reproducing the two ways nodes
are drawn. We then loaded our reproduction of the lexi-graph

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

in GraphCoiffure and wrote a stylesheet that used our recre-
ated node shapes. The “personality” shape was applied to
nodes with a degree greater than 6, while the “coffee type”
shape was applied to the others. This stylesheet contains less
than 30 lines of code and was written in about five min-
utes. However, while the resulting diagram (Fig. 8b) looks
promising, more touching-up is needed: several nodes over-
lap and the overall shape of the diagram (i.e., the layout and
the page) is still far from the original infographic’s.

To adapt the layout, we loaded our page layout schema
to serve as a reference. We then stretched and rotated the
graph to make it fit the page using the node group defor-
mation tools described in Sect. 4.1.2. After that, we created
node groups for each language family and deformed them
using a repeller to eliminate overlaps and to unclutter dense
regions; we occasionally had to manually move individual
nodes or node selections. We took special care to avoid hav-
ing nodes and edges overlap areas of the page that had been
assigned to other types of visual content (i.e., text or other
images). This process is illustrated in Fig. 8c.

Once happy with the layout, we exported the diagram
from GraphCoiffure as a regular image and loaded it in
Adobe Photoshop, where we added the central image and
a company logo to produce Fig. 8d.

4.2.2. Rotten Tomatoes infographics

To illustrate the flexibility of our method, we designed two
versions of another graph, which counts 462 nodes and
511 edges. The data came from a subset of HetRec 2011’s
“MovieLens + IMDb/Rotten Tomatoes” dataset [CBK11,
rg14] and presented a network of the movies of 2008 that
received the most user ratings (over 50,000).

We loaded the graph in GraphCoiffure and applied an ini-
tial force-directed layout to get an idea of its general aspect.
After that, we started working on the stylesheet: we encoded
movies as ellipses, actors as stars, and directors as director’s
chairs—each accompanied with labels showing their titles
and names. We mapped movies’ Rotten Tomatoes audience
scores to their width and their top critics score to their height;
actors’ average ranks (their “importance” in a movie) to their
size; and actors’ ranks in each of their movies to the thick-
ness of their connecting edges. We then defined the fonts and
colors.

We then worked on the graph’s layout. We activated the
interactive force-directed layout and we used a magnet to
clean up the layout by separating smaller connected compo-
nents from the largest one (with 367 nodes). As we wanted
the infographic’s title to appear inside the diagram instead
of above it, we placed a repeller with a relatively large ra-
dius in a central region between the many smaller connected
components and the largest one, forcing the layout to re-
shape itself around this region (effectively creating a hole in
the layout). After the physics engine had done its work, we

stopped it and used the node group tools to stretch the graph
horizontally to give the infographic a landscape aspect ratio.
After making some minor tweaks by manually moving some
nodes to ensure their labels were readable, we exported the
diagram as an SVG file and opened it in Adobe Illustrator.
Finally, we added the title and a background image and made
some last adjustments for the color of the objects. The final
graphic is shown in Fig. 9a, a close-up of which is shown in
Fig. 9b.

Next, to give a better idea of GraphCoiffure’s flexibility,
we created a second infographic for the same dataset, keep-
ing the encoding of actors as stars and directors as chairs, but
changing the encoding of movies so that they also take their
genre into account. Movies are now shown as either toma-
toes (fresh) or green blobs (rotten). Inside these icons, we
added theater masks to represent the genres, and audience
score was encoded as node size. Once again we separated
smaller components from the large one, but we did not insert
a “hole” for the logo in the center, as we decided on a differ-
ent design. We also decided to keep the original proportions
of the diagram. To produce the final image, we exported it
and placed it over a background previously created in Illus-
trator. A close-up of this image is shown in Fig 9c and the
full version is available on GraphCoiffure’s graph collection
website [SBD∗14].

4.3. Implementation details

GraphCoiffure was developed in Python 3.3 using the Py-
Side bindings for the C++ Qt framework. Libraries Net-
workX and TinyCSS were used for the graphs and the
stylesheet system, respectively. Qt’s XML classes and the
pyparsing library were used for the SVG parser. The physics
engine was implemented with the numpy and scipy libraries.

We did not design GraphCoiffure for scalability, so in
its current state it cannot be used to generate visualizations
for graphs of more than a few hundred nodes and edges.
This isn’t really a problem, though, as our focus was more
on printed visualizations, which have a natural limit on the
amount of data that can be depicted due to the finite and non-
interactive nature of physical surfaces.

5. Conclusion

In this paper, we have highlighted the importance of provid-
ing means to refine automatically generated graph layouts.
Our interview of Dana Diminescu emphasized the impor-
tance of considering collaborators’ differences of perspec-
tives, as her example revealed that graphic designers value
visual aspects over information, while researchers value the
opposite. To bridge these points of view, we have proposed
GraphCoiffure as a proof-of-concept prototype that helps
individual users or collaborators transition between graph
editors and graphics software, allowing them to beautify
graphs. Although it is already powerful, we can think of

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

(a) The original coffee / per-
sonalities infographic.

(b) Applying a stylesheet based on the coffee info-
graphic.

(c) Adapting the layout to
the page layout schema.

(d) Re-styled lexi-graph

Figure 8: Making our lexi-graph reproduction look like the coffee infographic.

Armand Schultz

Frank Miller (II)

Andy Richter

Jessica Alba

Andrew Stanton

Burn After
Reading

Diane Lane

Bedtime Stories

Jon Favreau

Aaron Eckhart

Tilda Swinton

Four
Christmases

John Cho

The Strangers

Ryan Reynolds

Brendan Fraser

Kellan Lutz

Lynn Cohen

Scarlett Johansson

John Travolta

Alan Arkin

Peter Billingsley

Cam Gigandet

John Malkovich

Collin Chou

Susan Sarandon

David Moreau

Kyle Chandler

Nelson McCormick

Will Arnett

David Koechner

Jesse Plemons

Speed Racer

Hancock

Phyllida Lloyd

M. Night Shyamalan

Thomas

Kretschmann

David Fincher

Stana Katic

Justin Chadwick Joseph Cross

Jackie Chan

Mos Def

George Clooney

The Eye

Timur

Bekmambetov

Andrew Adamson

Paul Dooley

Matthew

McConaughey

The Curious
Case of

Benjamin
Button

Paul W.S. Anderson

The Dark Knight

Steven Spielberg

Ian McShane

Nick Nolte

Adrianne Palicki

What Happens
in Vegas

Forest Whitaker

Liam Neeson

Cameron Diaz

Sex and the City

Jay Phillips

Louis Leterrier

Seann William Scott

Paul Weiland

Nicholas Stoller

Paul Rudd

Charlize Theron

Edward Norton

Donald Sutherland

Will Ferrell

Seth Rogen

Christina Ricci

Meryl Streep

Changeling

Jason Bateman

Gregory Hoblit

Robert Downey Jr.

Ben Stiller

Chloe Moretz

Get Smart

Samuel L. Jackson

Philip Seymour

Hoffman

Sarah Paulson

Pierce Brosnan

Emile Hirsch

Valerie Azlynn

Mary-Louise Parker

John C. Reilly

Madison Pettis

Mila Kunis

Kenny Ortega

Brian Huskey

Joseph Moore

Kevin Spacey

Christine Jeffs

Tom Vaughan

Colin Hanks

Jeff Bridges

Rob Minkoff

Forgetting
Sarah Marshall

Fool's Gold

The Bank Job

Georgie Henley

Spencer Garrett

Doug Liman

D.W. Moffett

Kristin Davis

Amber Heard

Eddie Izzard

Shia LaBeouf

Jeff Garlin

Brad Pitt

Jim Sturgess

Amy Adams

Kristen Stewart

Seth Gordon

Ariel Winter

Zooey Deschanel

Chris Rock
Billy Burke

Guillermo del Toro

Patrick Dempsey

Elissa Knight

Quantum of
Solace

Chris Williams

Sunshine
Cleaning

André Benjamin

Steve Carell

Kristen Bell

Kim Dickens
Dennis Quaid

Brad Leland

Scott Porter

The Forbidden
Kingdom

Fred Willard

Prom Night

Twilight

Bill Hader

Dan Fogler

Christian Bale

Gwyneth Paltrow

Janine Turner

Horton Hears a
Who!

Kevin Sussman

Leslie Bibb

Matt Walsh

The Mummy:
Tomb of the

Dragon Emperor

Mathieu Amalric

Jimmy Hayward

Sayed Badreya

Selma Blair

Jason Segel

Cate Blanchett

Made of Honor

Kevin Smith

Werner Daehn

Sarah Jessica

Parker

Taraji P. Henson

Minka Kelly

Andy Wachowski

Adam McKay

Never Back
Down

Natalya Rudakova

Kate Bosworth

Be Kind Rewind

Ron Perlman

John Hurt

Peter Segal

Olga Kurylenko

Gabriele Muccino

Michael McCullers

The Spirit

21

Nick Swardson

Mamma Mia!

Milk

John Stevenson

Jet Li

Catherine

Hardwicke

The Chronicles
of Narnia:

Prince Caspian

Russell Brand

A Hard Rain's
Gonna Fall

Bolt

Terence Stamp

Untraceable

Jason Statham

Hayden Christensen

Christian Oliver

Pete Travis

D.J. Caruso

Tom Cruise

Parker Posey

Paul Bettany

Richard Jenkins

Bryan Bertino

Seven Pounds

Zac Efron

Pierre Morel

Mark Wahlberg

Heath Ledger

Harold and
Kumar Escape

from
Guantanamo

Bay

Step Brothers

Daniel Craig

Rob Corddry

Tim Guinee

Sean Penn

Marc Forster

Meet the
Spartans

Jason Friedberg

Kung Fu Panda

Anatole Taubman

Jeff Wadlow

WALL·E

Guy Pearce

Transporter 3

Michael Patrick King

Maura Tierney

Toby Metcalf

Jumper

The Spiderwick
Chronicles

Keri Russell

Ethan Coen

Mark Waters (VIII)

Michelle Monaghan

Carmen Electra

High School
Musical 3:

Senior Year

Eric Christian Olsen

Jack Black

Jason Sudeikis

Miley Cyrus

Will Lyman

Eric Bana

Bill Smitrovich

Greg Kinnear

Yes Man

Reese Witherspoon

Natalie Portman

Rob Cohen

Matthew Fox

Baby Mama

Sigourney Weaver

David Schwimmer

Angelina Jolie

ValkyrieSean Faris

The Incredible
Hulk

Gus Van Sant

Amanda Seyfried

Paulie Litt

Zach Gilford

Faran Tahir

Eric Darnell

Vantage Point

Indiana Jones
and the

Kingdom of the
Crystal Skull

Hellboy II: The
Golden Army

Dustin Hoffman

Dana Wheeler-

Nicholson

Wanted

Harrison Ford

Woody Harrelson

Kim Cattrall

Jon Hurwitz

Terrence Howard

Jim Carrey

Tropic Thunder

Will Smith

Vince Vaughn

Semi-Pro

Skandar Keynes

John Leguizamo

David Wain

The Other
Boleyn Girl

Saffron Burrows

William Fichtner

Definitely,
Maybe

Kevin Mckidd

Derek Luke

Taken

Eagle Eye

Taylor Kitsch
William Hurt

Jonah Hill

Peyton Reed

Jamie Bell

Michael Waxman

Kal Penn

Jeremy Sumpter

Olivier Megaton

Gran Torino

Mary Steenburgen

Kate Hudson

Harvey Friedman

Freddie Highmore

Bryan Singer

Connie Britton

James McAvoy

Christopher Nolan

Susie Essman

Ken Davitian

Doug Jones

Kent Alterman

Andrew Daly

Doubt

Adam Shankman

Lucas Grabeel
Isla Fisher

Andy Tennant

Diedrich Bader

Robert Duvall

Ashton Kutcher

Iron Man Shaun Toub

"Dwayne ""The

Rock"" Johnson"

Ken Jeong

Brittany Snow

Michel Gondry

The Happening

Ahney Her

Death Race

Clark Gregg

François Berléand

Tina Fey

John Patrick

Shanley

Gabriel Macht

Emily Blunt

Sean O'Bryan

Alessandro Nivola

Amy Poehler
Craig Robinson

Rosario Dawson

Adam Brooks

Trieu Tran

Bee Vang

Peter Berg

Zack and Miri
Make a Porno

Denis O'Hare

Waldemar Kobus

Roger Donaldson

Ray Winstone

Aimee Teegarden

Robert Luketic

Sean MaGuire

Elizabeth Banks

Clint Eastwood

Anne Hathaway

Tyrese Gibson

Role Models

Carol Burnett

Liv Tyler

Madagascar:
Escape 2 Africa

Morgan Freeman

David Mackay

Nicole Kidman

Australia

Danny Boyle

Meagan Good

Ace of Hearts

Being Human

Chris Carter

Camilla Belle

Malin Akerman

Philip Cabrita

Marisa Tomei

Amanda Peet

Jason Watkins

Matthew Harrison

David Wenham

Michael Cram

10,000 BC

Brendan Gleeson

Steven Strait

Amy Jo Johnson

Briana Evigan

Daniel Boileau

Colin Farrell

Kimberly Peirce

Ryan Phillippe

Kasey Kieler

Katherine Heigl

Roland Emmerich

Britt McKillip

Dave Lantaigne

Ruth Marshall

Mark Taylor
Tattiawna Jones

Sinead Keenan

David Duchovny

David Paetkau

In Bruges

Will Kemp

Stephen Daldry

Channing Tatum

Slumdog
Millionaire Anne Fletcher

Dean Cain

Hugh Dillon

David Hackl

Lyndsey Marshal

The X Files: I
Want to Believe

Jessica Lucas

Robert Hoffman

T.J. Miller

Step Up 2: The
Streets

Connor Dunn

Burkely Duffield

Donald Sumpter

David Kross

Flashpoint

Mark Fleischmann

Hugh Jackman

Cliff Curtis

Stephen Surjik

Kate Winslet

David Patrick GreenLenora Crichlow

Jon Chu

Mickey Rourke
Russell Tovey

Martin McDonagh

Mike Dopud

The Wrestler

Nathan Clark

Saw V

Ralph Fiennes

Gillian Anderson

Dev Patel

Matt Reeves

Sonny Litt
Darren Aronofsky

Tobin Bell

Aidan Turner

Julie Benz

Lizzy Caplan

Cloverfield

27 Dresses

Stop-Loss

Baz Luhrmann

Sylvester Stallone

The Reader

C.J. Jackman-

Zigante

Enrico Colantoni

Rambo

James Marsden

Anne Marie DeLuise

Sergio Di Zio

Abbie Cornish

zohan

You Don't Mess
with the Zohan

Adam Sandler Michael Buffer

Dave Matthews

Kevin Nealon

Robert Smigel

Rob Schneider

Dina Doron

John Turturro

Dennis Dugan

Daoud Heidami

Lainie Kazan Charlotte Rae

Ido Mosseri

Emmanuelle

Chriqui

(a) First infographic.

(b) Close-up of the first infographic.

(c) Close-up of the second infographic.

Figure 9: Our infographics of the 2008 Rotten Tomatoes movie dataset.

several extra features that would immediately increase the
practical utility of GraphCoiffure; these are support for undi-
rected graphs, curved edges, options for edge routing, alter-
native edge drawings, a more sophisticated label position-
ing strategy, metanodes, stylesheet gradients, history man-
agement, loading graphs from formats other than GraphML
(e.g., Graphviz’s dot), and other presentation aid types (e.g,
highlights, convex hulls, visual landmarks, legends, etc.).

In addition, while we have already included several lay-
out manipulation tools, we believe there is space for the de-
velopment of new techniques for deforming and reshaping
layouts. This could provide users with even more power and
control over the image they are composing. Another exten-
sion to our work could be to find ways to transform an image
depicting a graph back into an editable diagram. Finally, it
should prove interesting to fully investigate how design ele-
ments can help increase the communicative power of a visu-
alization, as is discussed in [BF14].

Overall, we acknowledge that GraphCoiffure is merely a
first step into facilitating the transition between content gen-
erators and designers when attempting to produce high qual-
ity static communicative node-link diagrams. However, our
proof-of-concept prototype already helps users make quality
diagrams that can be smoothly moved from screen to page.

6. Acknowledgments

This work has been partially sponsored by Brazilian funding
agencies CNPq, CAPES, and FAPERGS. We also acknowl-
edge the reviewers’ comments, which helped improve the
paper.

References

[Aub04] AUBER D.: Tulip: A huge graph visualization frame-
work. In Graph Drawing Software, Jünger M., Mutzel P.,

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



A. Spritzer & J. Boy & P. Dragicevic & J. Fekete & C. Freitas / Towards a smooth design process for static communicative node-link diagrams

(Eds.), Mathematics and Visualization. Springer Berlin Heidel-
berg, 2004, pp. 105–126. 3

[Bau13] BAUR R.: Les 101 Mots du Design Graphique à l’Usage
de Tous. Archibooks, 2013. 2

[BETT99] BATTISTA G. D., EADES P., TAMASSIA R., TOLLIS
I. G.: Graph Drawing. Prentice Hall, Upper Saddle River, NJ,
1999. 5

[BF14] BOY J., FEKETE J.-D.: The CO2 Pollution Map: Lessons
Learned from Designing a Visualization that Bridges the Gap
between Visual Communication and Information Visualization.
In IEEE Conference on Information Visualization [Poster paper]
(Paris, France, Nov. 2014). To appear. 9

[BHJ09] BASTIAN M., HEYMANN S., JACOMY M.: Gephi: an
open source software for exploring and manipulating networks.
In ICWSM: International AAAI Conference on Weblogs and So-
cial Media (2009), pp. 361–362. http://www.gephi.org. 3

[BRSG07] BENNETT C., RYALL J., SPALTEHOLZ L., GOOCH
A.: The aesthetics of graph visualization. In Proceedings of the
Third Eurographics Conference on Computational Aesthetics in
Graphics, Visualization and Imaging (Aire-la-Ville, Switzerland,
Switzerland, 2007), Computational Aesthetics’07, Eurographics
Association, pp. 57–64. 5

[CBK11] CANTADOR I., BRUSILOVSKY P., KUFLIK T.: 2nd
workshop on information heterogeneity and fusion in recom-
mender systems (hetrec 2011). In Proceedings of the 5th ACM
conference on Recommender systems (New York, NY, USA,
2011), RecSys 2011, ACM. 8

[Dim12a] DIMINESCU D.: e-diasporas atlas. http://www.e-
diasporas.fr, 2012. [accessed on June 29, 2014]. 2

[Dim12b] DIMINESCU D.: e-Diasporas Atlas : Exploration and
Cartography of Diasporas on Digital Networks. Maison des Sci-
ences de l’Homme, 2012. 2

[Elm08] ELMS T.: Lexical distance among the languages of
europe. http://elms.wordpress.com/2008/03/04/lexical-distance-
among-languages-of-europe/, 2008. [accessed on May 23, 2014].
4

[FR91] FRUCHTERMAN T. M. J., REINGOLD E. M.: Graph
drawing by force-directed placement. Softw. Pract. Exper. 21,
11 (1991), 1129–1164. 6

[GN00] GANSNER E. R., NORTH S. C.: An open graph visual-
ization system and its applications to software engineering. Soft-
ware - Practice and Experience 30, 11 (2000), 1203–1233. 3

[HSS08] HAGBERG A. A., SCHULT D. A., SWART P. J.: Ex-
ploring network structure, dynamics, and function using Net-
workX. In Proceedings of the 7th Python in Science Conference
(SciPy2008) (Pasadena, CA USA, Aug. 2008), pp. 11–15. 6

[Lim13] LIMA M.: Visual Complexity: Mapping Patterns of In-
formation. Princeton Architectural Press, 2013. 2

[Lim14] LIMA M.: Visual complexity.
http://www.visualcomplexity.com, 2014. [accessed on May
23, 2014]. 2

[MJ09] MCGUFFIN M. J., JURISICA I.: Interaction techniques
for selecting and manipulating subgraphs in network visualiza-
tions. IEEE Transactions on Visualization and Computer Graph-
ics 15 (2009), 937–944. 3

[Pie06] PIETRIGA E.: Semantic web data visualization with
graph style sheets. In Proceedings of the 2006 ACM Symposium
on Software Visualization (New York, NY, USA, 2006), SoftVis
’06, ACM, pp. 177–178. 5

[Pop14] POPCHARTLAB: Pop chart lab website.
http://www.popchartlab.com, 2014. [accessed on May 23,
2014]. 2

[PPBP10] PURCHASE H. C., PLIMMER B., BAKER R.,
PILCHER C.: Graph drawing aesthetics in user-sketched graph
layouts. In Proceedings of the Eleventh Australasian Confer-
ence on User Interface - Volume 106 (Darlinghurst, Australia,
Australia, 2010), AUIC ’10, Australian Computer Society, Inc.,
pp. 80–88. 5

[RDLC12] RICHE N. H., DWYER T., LEE B., CARPENDALE
S.: Exploring the design space of interactive link curvature in
network diagrams. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (New York, NY, USA,
2012), AVI ’12, ACM, pp. 506–513. 3

[rg14] RESEARCH GROUP G.: Grouplens website.
http://www.grouplens.org, 2014. [accessed on February
27, 2015]. 8

[SBD∗14] SPRITZER A. S., BOY J., DRAGICEVIC P., FEKETE
J.-D., FREITAS C. M. D. S.: Selected graphs visualizations.
http://www.graphs-graphcoiffure.rhcloud.com, 2014. [accessed
on March 6, 2015]. 4, 8

[SF12] SPRITZER A. S., FREITAS C. M. D. S.: Design and eval-
uation of magnetviz - a graph visualization tool. IEEE Trans-
actions on Visualization and Computer Graphics 18, 5 (2012),
822–835. 3, 6

[SMFS∗10] SMITH M. A., MILIC-FRAYLING N., SHNEI-
DERMAN B., RODRIGUES E. M., LESKOVEC J., DUNNE
C.: Nodexl: a free and open network overview, dis-
covery and exploration add-in for excel 2007/2010.
http://nodexl.codeplex.com/ from the Social Media Research
Foundation, http://www.smrfoundation.org, 2010. [accessed on
June 29, 2014]. 3

[SMO∗03] SHANNON P., MARKIEL A., OZIER O., BALIGA
N. S., WANG J. T., RAMAGE D., AMIN N., SCHWIKOWSKI
B., IDEKER T.: Cytoscape. http://www.cytoscape.org, 2003. [ac-
cessed on June 29, 2014]. 3

[SNDC10] SCHMIDT S., NACENTA M. A., DACHSELT R.,
CARPENDALE S.: A set of multi-touch graph interaction tech-
niques. In ACM International Conference on Interactive Table-
tops and Surfaces (New York, NY, USA, 2010), ITS ’10, ACM,
pp. 113–116. 3

[Tam14] TAMASSIA R.: Handbook of Graph Drawing and Visu-
alization. CRC Press, Boca Raton, FL, 2014. 3

[WC07] WONG N., CARPENDALE S.: Supporting interactive
graph exploration using edge plucking. In Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series
(Jan. 2007), vol. 6495 of Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series. 3

[WCG03] WONG N., CARPENDALE S., GREENBERG S.: Edge-
lens: an interactive method for managing edge congestion in
graphs. In Proceedings of the Ninth annual IEEE conference on
Information visualization (Washington, DC, USA, 2003), INFO-
VIS’03, IEEE Computer Society, pp. 51–58. 3

[WPCM02] WARE C., PURCHASE H., COLPOYS L., MCGILL
M.: Cognitive measurements of graph aesthetics. Information
Visualization 1, 2 (June 2002), 103–110. 5

[yEd14] YED: yed. http://www.yworks.com/yed, 2014. [accessed
on June 29, 2014]. 3

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.


