
A Physics-based Approach for Interactive Manipulation of
Graph Visualizations

Andre Suslik Spritzer
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Caixa Postal 15064 91.501-970 Porto Alegre, RS

Brazil

spritzer@inf.ufrgs.br

Carla M.D.S. Freitas
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Caixa Postal 15064 91.501-970 Porto Alegre, RS

Brazil

carla@inf.ufrgs.br

ABSTRACT
This paper presents an interactive physics-based technique for the
exploration and dynamic reorganization of graph layouts that
takes into account semantic properties which the user might need
to emphasize. Many techniques have been proposed that take a
graph as input and produce a visualization solely based on its
topology, seldom ever relying on the semantic attributes of nodes
and edges. These automatic topology-based algorithms might
generate aesthetically interesting layouts, but they neglect
information that might be important for the user. Among these are
the force-directed or energy minimization algorithms, which use
physics analogies to produce satisfactory layouts. They consist of
applying forces on the nodes, which move until the physical
system enters a state of mechanical equilibrium. We propose an
extension of this metaphor to include tools for the interactive
manipulation of such layouts. These tools are comprised of
magnets, which attract nodes with user-specified criteria to the
regions surrounding the magnets. Magnets can be nested and also
used to intuitively perform set operations such as union and
intersection, becoming thus an intuitive visual tool for sorting
through the datasets. To evaluate the technique we discuss how
they can be used to perform common graph visualization tasks.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – graphical user interfaces, interaction styles.

General Terms
Design, Human Factors.

Keywords
Graph visualization, Interaction

1. INTRODUCTION
Graphs are present in many different application areas, ranging
from biology to social network analysis and software engineering.
While information organized in graph-like structures can be

explored textually, through tools such as query languages, this
usually requires an expert user, being too complex and not
intuitive enough for most people, who have little experience with
such instruments. Therefore, many of these areas make use of
applications that visualize their inherent graphs in order to make it
easier for their users to grasp and manipulate the information they
require.

By far, the most popular and intuitive visual representation of a
graph is the node-link diagram. A large community of researchers
is dedicated specifically to the study of how to compute the best
possible layout. The problem they attempt to solve can be simply
stated as how to find the geometric positions of the nodes that are
aesthetically more interesting for the better comprehension of the
graph and its structure. Its solution, though, has proven to be quite
complex.

Different algorithms for the layout of node-link diagrams have
been created, each favoring certain aesthetic criteria, such as edge
crossings, edge bends, graph symmetry, etc., in detriment of
others. Some of these techniques are better for certain
applications while some are better for others, but all have their
limitations, which range from computational cost to visual clutter.
A good source on the field of graph drawing is the book written
by Di Battista et al. [2].

To deal with the limitations of these layout algorithms, many
approaches have been experimented [11]. While some have
applied navigation and interaction schemes on the traditional
layouts, others have built 3D visualization techniques, changed
from node-link diagrams to alternative visual representations, or
combined existent techniques into new hybrid ones.

While some of these techniques might be well suited for certain
applications, no technique is generally applicable. Also, while
many techniques can build aesthetically pleasing layouts, few
take into account the semantic information contained in the
attributes of the nodes and edges of a graph, focusing only on the
topological characteristics. Some use interaction tools such as
filtering, to achieve some visual customization based on the
semantic information, but very few are attribute-aware and,
among those one finds that most are too application-specific to be
generally applicable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The main information associated to a graph is the relationships
represented by its topology, but it is often the case that the
attributes represented in its nodes and edges are just as important
to the user of a graph visualization application, who might be
missing out important data and even relationships that are not
explicitly expressed.

AVI’08, May 28–30, 2008, Napoli, Italy.
Copyright 2008 ACM 1-978-60558-141-5…$5.00.

271

In this work, we present a physically-based technique for the
interactive manipulation of graph visualizations. Our technique
consists of providing the user with virtual magnets associated
with user-defined criteria, which can be topology or attribute-
based, and that allow the interactive manipulation of the
visualization of a graph in order to make it semantically more
interesting and valuable. Magnets can also be used to intuitively
perform set operations such as union and intersection, becoming a
visual tool for exploring the datasets, and allowing the user to
discover new relationships that were previously invisible due to
the techniques that focused exclusively on the topology. To
illustrate our technique, we show how it can be applied to perform
common graph visualization tasks identified by Lee et al. [13].

In the following section, we present an overview of related works.
Section 3 describes our approach, and gives some details of its
implementation. Section 4 illustrates how it can be applied and in
Section 5 we present our conclusions and draw some comments
on future work.

2. RELATED WORK
The works related to the technique presented in this paper are
mostly in four subjects: force-directed graph layouts; interactive
graph layout reorganization; use of “false” elements for layout re-
organization; and evaluation and design of graph visualization
techniques.

2.1 Force-directed Layouts
Force-directed graph layouts are amongst the most popular in
graph visualization due to their pleasing visual results, relative
implementation simplicity and flexibility as to the inclusion of
new aesthetic criteria. The basic idea of a force-directed algorithm
is to treat the graph as a physical system, assigning forces to the
nodes and edges, and minimizing its energy until reaching a stable
layout. The forces will work to rearrange the positions of the
nodes until the system finds itself in a state of mechanical
equilibrium. Di Battista et al.’s book [2] presents a good survey of
force-directed methods.
One of the first force-directed algorithms was proposed by Eades
[6]. It takes the intuitive approach of treating the graph as a mass-
spring system, with nodes being steel rings and edges springs that
connect them. Despite the physical metaphor, it does not aim for
physical accuracy, not employing Hooke’s law for the springs and
with forces affecting velocity instead of acceleration. It produces
visualizations of uniform edge length and allows representation of
graph symmetry. The algorithm consists of randomly positioning
the nodes and simply running the simulation for a number of
iterations, which is one of its drawbacks, since not all graphs
converge at the same time.
Many other algorithms extended the basic idea presented by
Eades. One of those is Kamada and Kawai’s [12], which aims at
positioning nodes in a way that their geometric distance is equal
to their graph-theoretic distance. It does so by having the
simulation assuming that between every two nodes there is a
spring with length equal to the theoretical distance between them.
Another interesting algorithm is Davidson and Harel’s [5], which
introduced the idea of using simulated annealing to minimize the
system’s energy function, which takes into account vertex
distribution, edge length and edge crossings. This algorithm can
be very time consuming, but can produce better results.

One of the most popular force-directed algorithms is the one
proposed by Fruchterman and Reingold [8]. This algorithm
consists on calculating all the forces that attract and repulse
nodes, at each iteration. Nodes connected by edges exert an
attraction force between them, while all nodes exert a repulsion
force on all others. From the forces, the position displacement a
node will suffer during each iteration is calculated and limited by
the current value of an attribute (usually used as temperature),
which is progressively decreased. This algorithm is relatively fast
and produces nice visual results.
Another interesting approach is Noack’s LinLog energy model
[14], which attempts to reveal clusters of highly connected nodes.
This technique is particularly useful for datasets such as social
networks, and was proposed in two variations, the node-repulsion
LinLog model [14][15] and the edge-repulsion LinLog model
[16]. Both variations produce similar drawings, but the latter
avoids dense accumulations of nodes with high degrees for graphs
with non-uniform degrees.
One interesting property of force-directed algorithms is that most
of them support the application of constraints. A position
constraint can be established by forcing nodes to remain within a
certain region, while other types of constraints can be used if they
can be expressed with forces. Examples of this include the use of
magnetic fields to impose orientation constraints [17] and the
utilization of dummy nodes to force groupings.
For many years, force-directed algorithms have suffered
dramatically from a scalability problem: the more nodes and
edges we have, the slower it is for the system to converge. Thus,
it was only possible to use these algorithms in real-time with
smaller graphs due to their high computational cost. However,
with the advent of faster, multi-core processors and powerful,
programmable graphic processing units (GPUs) this reality is
changing fast. Mass-spring algorithms can now deal with
hundreds of thousands nodes and edges in real-time, and many
different applications, such as real-time cloth simulation, are
already making use of that [9, 18]. Recent works on GPU-based
force-directed layout include Frishman and Tal [7], reporting a
multi-level graph layout algorithm.
Aside from the scalability problem, force-directed algorithms also
suffer greatly from a predictability problem. Two different runs of
an algorithm over similar (or even the same) input graphs might
generate two completely different layouts, which is not very
helpful in allowing the user to create and maintain a mental map
of the visualization. One approach that has been used to minimize
this is to run another layout algorithm first, and afterwards
execute the force-directed technique on that.

2.2 Interactive Layout Reorganization
Most graph visualization techniques usually use interaction and
navigation techniques to explore static, pre-computed layouts.
Well-known techniques include filtering; fish-eye views; scrolling
and panning; zooming and even coordination of two or more
visualizations (see Herman et al. [11], for a wider review on
navigation and interaction techniques for graph visualizations).
Very few techniques, though, allow for dynamic interactive
reorganization of graph layouts.
Some applications allow for simple layout reorganization by
letting the user move around nodes in force-directed layouts,
which will cause an alteration in the balance of energy of the

272

force-directed system, thus triggering a repositioning of the
nodes, which will move until equilibrium is again reached.
Another known technique is to find clusters of nodes and
transform them into cluster-nodes that can be expanded and
collapsed by the user. Clusters can also be used to perform
cluster-based semantic zooming, which allows for a level-of-
detail-like approach to the visualization, letting the user
incrementally explore the graph by zooming in or out.
Considering the few techniques that allow for dynamic graph
layout reorganization, we find the work of Henry et al., NodeTrix
[10], which is a hybrid of matrix and node-link visualizations.
NodeTrix allows the user to turn clusters of nodes of node-link
visualizations into matrices, which are then displayed within the
node-link diagram. The layout itself is computed with the
previously mentioned LinLog algorithm.

2.3 Use of False Elements
The next few related works are not exactly devoted to graph
layout reorganization, but they introduced ideas that we found
inspiring and somehow proved the feasibility of using magnets to
allow users to re-organize visualizations in a more powerful and
easy way.
Fidg’t1 is an application developed for the management of social
networks that includes an interactive visualization tool that allows
users to iteratively explore their networks by creating tag magnets
for pictures (from Flickr) or music (from Last.fm), and observing
how its nodes are attracted or repelled.
Although devoted to a different data domain (multivariate
information), the Dust & Magnet information visualization
technique proposed by Yi et al. [19] also uses a magnet metaphor.
Finally, it is important to mention that the technique presented in
our work was partly inspired by Bier and Stone’s Snap-Dragging
[4], which is an interactive technique that aims at helping the user
make precise line drawings.

2.4 Evaluation and Design of Graph
Visualization Techniques
Evaluating such a variety of graph layout techniques and
interaction techniques is a huge problem, because there are both
perceptual and functional issues involved. Few works deal with
evaluation of graph visualization techniques. A very useful task
taxonomy for graph visualizations has been proposed by Lee et al.
[13]. In their article, the authors provide a list of tasks that users
might need to perform while using a graph visualization
application. In Section 4 we will use this taxonomy to evaluate
how our technique fares when the user tries to execute the defined
tasks.

3. OUR TOOL
The goal of our technique is to aid users in interactively
reorganizing the layout of a graph to better fit their needs by
providing them with tools that allow the manipulation of graph
visualizations based on the topological and semantic attributes
that better interest them. To do so, we build on the physics
metaphor of force-directed algorithms by allowing the placement

1 http://fidgt.com

of virtual magnets, which attract nodes that fulfil certain user-
defined criteria. While we follow a magnet metaphor, though,
physical accuracy is not one of our aims.
In our technique magnets can be placed on the scene in order to
reorganize the graph. They can be set to attract nodes based on
their values for certain criteria, which can be topological (such as
nodes that have a certain degree or that have a path to another
node with a certain length) or attribute-based (i.e. all users that
come from the UK). Also, boundary shapes can be applied to
magnets to keep the nodes they attract bound to certain regions of
the scene.

3.1 Basic Graph Layout
In our technique, the user is given two options for the
computation of the layout: a mass-spring algorithm similar to
Eades’s [6] or an adapted version of Fruchterman and Reingold’s
technique [8].
In the first option, the layout of the graph is computed assuming
that all nodes have equal mass. The parameters of the algorithm,
such as time step, edge rest length, damping factor and node
repulsion force can be changed by the user to produce a
visualization that is more satisfying aesthetically. The rest length
of the edges can be either a fixed value provided by the user or
computed based on the degree of the nodes that it links (the
higher the degree, the longest the length). The layout is dynamic
and is always being recomputed; therefore, any change in the
position of a node will trigger a subsequent reorganization of the
layout. Figure 1 shows a small graph with layout computed using
this algorithm.

Figure 1. Graph of the largest component (largest connected
subgraph) of the AVI coauthorship network drawn using a
mass-spring algorithm.
In the second option, Fruchterman and Reingold’s technique is
combined with the Barnes and Hut algorithm [3], and slightly
adapted to better fit our needs. Our modifications were the
addition of a small gravitational force that pulls all nodes slightly
towards the centre of the workspace and the alteration of the
manner in which the algorithm runs (we re-evaluate it every
frame instead of running it for a given number of iterations). The
user can set several parameters, such as time step, damping, a
constant that is used for the computation of the optimal distance
between two vertices, maximum attraction force (to make it easier
for the simulation to reach stability), attraction and repulsion
exponents and central gravitation factor. Figure 2 shows the same
graph as Figure 1 computed using this algorithm.

273

Figure 2. Graph of the largest component of the AVI
coauthorship network drawn using our variation of
Fruchterman and Reingold’s technique.
In both cases, Verlet integration is used to compute node positions
in every frame due to its stability and area preserving properties.
To allow for easier navigation, the user can pause and resume the
simulation at any time.

3.2 Magnets
Magnets are special objects that can be added to the scene which
have the ability to attract nodes of a graph that fulfil certain user-
defined criteria. Figure 3 shows how magnets are visually
represented in the prototype we developed.

Figure 3. Visual representation of a magnet.

A magnet works by exerting onto each of these nodes an
attraction force that will progressively move them towards it,
thereby building a cluster of semantically-related nodes around it.
When these nodes move, the force-directed layout algorithm
ensures that all the other nodes that are connected to them by
edges will be pulled along, reorganizing the whole layout of the
graph in the process.
To each magnet users should associate one or more attraction
criteria, which can be set as requirements of attraction or simply
criteria. To be attracted a node must fulfil all requirements and at
least one of the defined criteria. These requirements and criteria
can be based on the topology of the graph, the attributes of its
nodes and edges or even other magnets that have been placed on
the scene.
Topology-based criteria use the structure of the graph to attract
nodes. It is possible to attract nodes based on properties such as
degree, path length (i.e. all nodes that are within a specified path
length from another node or group of nodes), connected subgraph
(i.e. subgraphs with a given number of nodes), connected
components (maximally connected subgraphs with a given
number of nodes) . Figure 4 shows an example of two magnets
with topology-based criteria in action.

Figure 4. A small graph with three magnets - one targeting
nodes of degree 3 (light blue nodes); the second attracting
nodes of degree 4 (green nodes) and the third one attracting
nodes with degree greater than 5 (light orange nodes).
Attribute-based criteria use the semantic properties contained in
nodes and edges in order to attract nodes. Users can set a magnet
to attract all the nodes in which a certain property exists, or not
only exists but is also equal to a certain value or is within a
certain value range (if it is numerical). Users can do the same for
edges, with the magnet then attracting the nodes linked by edges
that fulfil the defined criteria. An example of a magnet with an
attribute-based criterion can be observed in Figure 5.

Figure 5. Graph of the largest component (largest connected
subgraph) of the AVI coauthorship network with a magnet set
to attract authors cited more than once (all nodes that have
attribute “citationsnb” greater than 1).
Magnet-based criteria use the sets of attracted nodes of each
magnet that was included in the scene by the user. With magnet-
based criteria, one can set a magnet to attract all the nodes that
another magnet also attracts, all the nodes that another magnet
does not attract, all the nodes that no magnet attracts or all the
nodes that are attracted by a combination of magnets. This allows
for set-based operations on the graph visualization, which usually
will end up in a graph reorganization.
Each criterion has a properties dialog through which it can be
properly set up and configured. They can be added, removed and
edited at any time, with users also being able to add multiple
criteria and requirements to each magnet. This makes it possible,
for instance, to set a magnet to attract all nodes that are not
attracted by any magnet, have degree higher than a certain
number and include the property that is called x. Figure 6 shows
an example of a magnet with different types of criteria.

274

Figure 6. Magnet attracting authors with at least two papers
that have written papers with more than three other authors
(nodes with the attribute “papersnb” greater than or equal to
2 and degree greater than 3).
In case one might wish to perform a union of the set of nodes
attracted by two or more different magnets, it is possible to
combine such magnets. The combination operation will create a
new compound magnet with the combined criteria of the ones
selected. The new magnet will have its force magnitude set to the
average of the original ones’, which will be subsequently set to 0.
Within the physics metaphor, a magnet works simply, on each
frame, by applying to all attracted nodes a force vector in its
direction with the specified magnitude. Also, to keep the magnet
from being overlapped by its attracted nodes and to keep the
attracted nodes from staying all bundled together too close to each
other, the magnet also exerts a repulsion force on each of the
attracted nodes. This repulsion force is the same as with common
nodes, working like a reverse gravity by being inversely
proportional to the distance of the node to the magnet and
proportional to the magnitude of the force of attraction, so that it
is stronger with the nodes that are near the magnet and weaker
with the ones that are progressively further away from it. The
magnitude of the repulsion force can be increased by the user to
change the minimum distance the nodes ought to have from the
magnet.
Occasionally it might be cumbersome to see which nodes that are
positioned close to a magnet are in fact attracted by it. To deal
with this situation, it is possible to assign a colour to all the nodes
that it attracts or to create a boundary shape around the magnet to
limit the region in which such nodes can move about.

3.3 Boundary Shapes
A boundary shape is simply a geometric shape (a circle in our
current implementation), which can be placed around a magnet
and have the function of bounding the nodes that such magnet
attracts to the region that the shape delimits. At the same time that
all attracted nodes are kept within the boundary shape, all other
nodes are kept out, with the shape exerting a repulsion force
similar to the one exerted on the other nodes by the nodes
themselves (a reverse gravity force).
To allow for a better distribution of space within a boundary
shape, the magnitude of the attraction force of the magnet is
reduced for the nodes that are inside. Also, when a node enters the
region of a boundary shape, the direction of the force that pulls it
is “refracted” by the application of Snell’s Law. So, instead of
there being a force that pulls the nodes straight to the magnet,

each node is pulled towards a nearby direction, which makes for
more evenly distributed nodes. Figure 7 shows boundary shapes
in action.
Once a node finds itself inside a magnet’s boundary shape, it
cannot escape that area, unless it is also attracted by another
magnet that is placed outside such shape.

Figure 7. Graph with boundary shapes.

3.4 Magnet Hierarchy
A magnet effectively creates sets of related nodes and ensures that
they remain near a certain physical region. Occasionally it might
be useful to refine this set of nodes into subsets. To allow for that,
it is possible to define magnets that act only on the subset of the
graph that is already attracted by another magnet. To do this, the
user must simply create a magnet and define another one as its
parent. It is interesting to note that children magnets might
children magnets of their own; creating thus a hierarchy of
magnets that might be helpful for incremental exploration of a
graph. Figure 8 illustrates the use of magnet hierarchy to achieve
a better organization of the layout.

Figure 8. Graph of the CHI conference citations with a
magnet hierarchy. All nodes within the red boundary shape
are proceedings of the conferences that were published before
2000, with the ones inside the beige shape being from after
1990.
If the parent magnet does not have a boundary shape, or has one,
but the child magnet is outside of it, a dashed line in the same
colour as the parent’s nodes appears between them. If there is a
boundary shape and the child magnet is within it, no line appears.

275

3.5 Magnet Intersections

Figure 9. Visual representation of an intersecting node.

Occasionally it may happen that a node fulfils the criteria of two
or more magnets. In such a case, the node will be attracted to all
of these magnets and will thus have a tendency to stabilize in the
middle of them with a bigger lean towards the ones with the
strongest attraction forces. If there is intersection between
magnets that have boundary shapes, their position constraints are
ignored, and they are allowed to escape the region they were
previously bound to.
To make the intersections more apparent visually, the common
nodes are drawn as in Figure 9. The user may also at any time
choose to display dashed lines from the intersecting nodes to their
‘parent’ magnets (Figure 10). Each line assumes the colour that
was defined by the user for the nodes that are attracted by its
respective magnet.

Figure 11. Largest component of the AVI coauthorship
network with a magnet that attracts all authors that have
more than one paper (node attribute “papersnb” greater than
1) and another that attracts all authors with more than one
citation (node attribute “citationsnb” greater than 1).

3.6 Implementation Details
A proof-of-concept prototype was developed to test and evaluate
our approach. It was initially developed with Python 2.5 and Qt
4.3.1, using PyQt and later ported to C++. The prototype takes as
input GraphML files and displays the graphs with the previously
described layouts.

Users are able to insert magnets, whose attributes (including
shapes and criteria) can be manipulated through a panel on the
right side of the graphical user interface. Each criterion has its
own properties dialog, which can be accessed by picking it from
the selected magnet’s requirement and criteria lists. The prototype
was built with extensibility in mind, so that the creation of new
tools and types of criteria is straightforward.

The panel on the right side of the user interface is used to provide
layout and magnet options to the user. When no node or magnet is
selected, information about the graph and the layout configuration
interface is displayed. If a magnet is selected, the magnet editor is
launched, allowing the user to set and edit the magnet criteria and

boundary shape. When the user selects a node, the panel displays
the attributes of that node.

As the goal of this prototype was to test our technique,
performance considerations were not taken into account in the
development of the application. Therefore, the current
implementation is completely on software and with only few
optimizations. Nevertheless, on the machine used to run it, a
single-core Mobile AMD Athlon 64 3000+ (2.0 GHz) with 2 GB
of DDR 333 MHz memory and an ATI Radeon 9700 graphics
card with 128 MB of memory, it was already possible to deal with
graphs of several hundred nodes and edges at interactive rates.

4. DISCUSSION
Lee et al. [13] have proposed a useful task taxonomy for graph
visualization in which it is defined a list of tasks that are
commonly performed while exploring a graph. They divide these
tasks into general low-level tasks, graph-specific tasks and
complex tasks, with the latter being further categorized into
topology, attribute-based, browsing and overview tasks.
To examine how our technique can contribute to the visualization
of a graph, in this section we show how it can be used to better
carry out many of the tasks on Lee et al.’s taxonomy.

Table 1. Low-level tasks inherently covered by our technique

Task Description

1. Filter
Given some conditions on attribute
values, find data cases satisfying those
conditions.

2. Find
Extremum

Find data cases possessing an extreme
value of an attribute over its range within
the data set.

3. Sort Given a set of data cases, rank them
according to some ordinal metric.

4. Determine
Range

Given a set of data cases, rank them
according to some ordinal metric.

5. Characterize
Distribution

Given a set of data cases and a
quantitative attribute of interest,
characterize the distribution of that
attribute’s values over the set.

6. Find
Anomalies

Identify any anomalies within a given set
of data cases with respect to a given
relationship or expectation.

7. Cluster Given a set of data cases, find clusters of
similar attribute values.

8. Correlate
Given a set of data cases and two
attributes, determine useful relationships
between the values of those attributes.

9. Find Adjacent
Nodes Given a node, find its adjacent nodes.

10. Set Operation Given multiple sets of nodes, perform set
operations on them.

Most of the higher-level tasks are built on combinations of the 10
general low-level visual analytic tasks described by Amar et al.
[1] and also three other operations proposed by themselves (with
one of them being exclusive to graphs). It is interesting to note
how our technique already inherently deals with several of these
lower-level tasks. Table 1, partially taken from Lee et al.’s paper,

276

contains a listing and description of the low-level tasks that our
approach is able to cover.
As can be clearly seen from Table 1, these tasks can be performed
through our technique simply by adding magnets to the scene
with the proper combination of criteria, and allowing the graph to
reorganize itself. Tools such as magnet boundary shapes and the
ability to operate on magnets themselves (through magnet
combination and magnets that have magnet-based criteria) make
carrying out these tasks a natural fit, with clustering and set
operations being some of the most natural applications for the
tools we propose.
Regarding to graph-specific higher level tasks, our technique also
provides adequate support to the user in accomplishing several of
them. In most cases the tasks can be easily carried out by relying
simply on the placement of magnets with the proper combination
of topology and attribute-based criteria followed by (if necessary)
the proper operations on the magnets themselves (such as magnet-
based criteria and magnet combination).
Lee et al. divide graph complex tasks into topology-based tasks,
attribute-based tasks, browsing tasks and overview tasks. Our
technique is especially useful for the first two categories and can
be easily integrated into applications that provide ways to
accomplish the other two types of tasks.
Topology-based tasks were further subdivided into a few
categories: adjacency, accessibility, common connection and
connectivity. Adjacency tasks include finding the set of nodes
adjacent to a node, a node’s degree and the node with the highest
degree. Accessibility includes issues such as finding all the nodes
accessible from another one and the set of nodes with distance
from another node within a certain range. Common connection
corresponds to finding a set of nodes that are connected to all the
nodes of a given set, while connectivity includes finding the
shortest path between two nodes, finding connected components
(defined by Lee et al. as a maximal connected subgraph) and
clusters (defined by the same authors as a subgraph of connected
components whose nodes have high connectivity).
Attribute-based tasks can work on nodes or edges and include
operations such as finding the nodes that have a specific attribute
value or that are linked by edges that have a certain attribute or a
certain attribute value in a specified range.
Browsing tasks include operations such as following a given path
or revisiting a previously visited node.
Finally, overview tasks correspond to exploratory operations
performed in order to quickly get an estimate of a certain value,
such as the size of a graph or subgraph, or patterns that the graph
tends to have.
As can be seen from the previous description of the different
types of tasks, magnets apply directly to topology and attribute-
based tasks. Such tasks can be accomplished simply by creating
magnets with the proper criteria. Browsing and overview tasks
can also be helped by the magnets, by making it easier to find
nodes on the scene and providing the visualization with some
node position predictability, since magnets can be inserted to
make sure that nodes that fulfill certain criteria are within a
certain region. For the tasks that our tools are unable to cover, the
solution is simply a matter of combining it with other techniques,
such as fish-eye-like visualizations, overview windows, node
search, etc.

One interesting aspect of our technique is that it can be used to
easily explore graph datasets by building queries through the
specification of magnets and their criteria, and performing set
operations on them, becoming thus an intuitive and simplified
alternative to query languages or filtering operations, which can
be too complex for most end-users that do not have advanced
programming and computer skills.

5. CONCLUSIONS AND FUTURE WORK
Even though there is a multitude of graph layout algorithms, there
is no one which fits to all types and sizes of graphs. With the
work presented in this paper, we aimed at developing a technique
that would help circumvent this fact by providing the user with
tools that could allow him to shape a layout into one of his/her
needs.
On the contrary of most graph layout techniques, which work
solely based on the topological structure of the graph, ours also
takes into account the information contained in attributes of the
nodes and edges. This allows the user to dispose the graph in a
layout that can be semantically more interesting.
Our tools, in great part due to the metaphor we employ, make it
possible for the user to intuitively navigate through the graph and
perform many common graph visualization operations.
One of the biggest drawbacks of force-directed algorithms is that
the layouts they produce tend to be unpredictable – different runs
on similar graphs (or even with the same one) might generate
completely different layouts, which is quite a hindrance for
maintaining a mental map of the graph. Our technique helps
minimize this limitation, allowing for a level of predictability in
otherwise unpredictable drawings. In two runs of the application
on the same graph, two magnets will always attract the same
nodes to the same place. It is not guaranteed that the nodes will be
at the same exact position, but their general location can be easily
known, since it is indicated by the users themselves.
Another interesting aspect of the presented technique is that it is
not bound to a specific layout algorithm: it can work with any that
allows for forces to be applied to nodes.
There is still work to be done in order to improve the technique
presented in this paper. Amongst the planned work is an efficient
implementation of the technique using the GPU on top of a more
sophisticated layout algorithm that more clearly separates clusters
of highly connected nodes, such as LinLog [14]. This
implementation will allow the use of the technique with larger
and more complex datasets, permitting its validation and better
adaptation for huge graphs, which have shown up quite frequently
lately due to the growing interest in the visualization of social
networks.
Some new features are also planned for the technique itself, such
as new types of criteria, arbitrarily-shaped magnet boundaries, the
possibility of making a magnet work only on the nodes that are
within a certain area (i.e. with a certain radius around it), and the
ability to collapse the nodes attracted by a magnet into an
expandable and collapsible cluster-node to allow for a better
iterative visualization. Also planned is a special magnet that
applies weighed forces to the nodes it attracts, allowing for a
visual sorting of such nodes (the closer the node is to the magnet,
the more it has of a certain property). This sorting magnet would

277

allow operations such as visually browsing by date, alphabetically
or any numerical value.
Planned work also includes user experiments for better validation
of the technique as well as its integration into a complete graph
visualization application that supports other features such as node
search, overview windows, coordination with different
visualizations, filtering and fish-eye-like views.

6. ACKNOWLEDGMENTS
We gratefully acknowledge the helpful comments of our
colleagues as well as Jean-Daniel Fekete and Nathalie Henry. We
also thank J.-D. Fekete and N. Henry for providing the datasets
we use in the paper. This work is partially sponsored by CNPq
(Brazilian Council for Research and Development), specially the
CNPQ/INRIA cooperation program (grant nr. 490087/2005-1).

7. REFERENCES
[1] Amar, R., Eagan, J. and Stasko, J. 2005 Low-Level

Components of Analytic Activity in Information
Visualization. In Proceedings of 11th IEEE Symposium on
Information Visualization (2005), 111-147

[2] Battista, G., Eades, P., Tamassia, R., and Tollis I.G. 1999.
Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice Hall, New Jersey.

[3] Barnes, J. and Hut, P. 1986. A hierarchical O(N log N)
Force-calculation Algorithm. Nature, 324(4).

[4] Bier, E. and Stone, M. 1986 Snap-dragging. ACM Computer
Graphics, 20 (August 1986), 233-240.

[5] Davidson, R. and Harel, D. 1996. Drawing Graphs Nicely
Using Simulated Annealing, ACM Transaction on Graphics,
15 (4), 301–331.

[6] Eades, P. 1984. A Heuristic for Graph Drawing, Congressus
Numerantium, 42(1984), 149–160.

[7] Frishman, Y. and Tal, A. 2007. Multilevel Graph Layout on
the GPU. IEEE Transactions on Visualization and Computer
Graphics, 13 (Nov-Dec 2007), 1310-1319.

[8] Fruchterman, T.M.J. and Reingold, E.M. 1991. Graph
Drawing by Force–Directed Placement. Software - Practice
& Experience, 21 (Nov 1991), 1129–1164.

[9] Georgii, J., Echtler, F. and Westermann, R. 2005 Interactive
simulation of deformable bodies on GPUs. In Proceedings of
Simulation and Visualization, 2005, 247- 258.

[10] Henry, N., Fekete, J.-D. and McGuffin, M. 2007 NodeTrix:
Hybrid representation for analyzing social networks. IEEE
Transactions on Visualization and Computer Graphics, 13
(Nov-Dec 2007), 1302-1309.

[11] Herman, I., Melancon, G., and Marshall, M. S. 2000.Graph
visualization and navigation in information visualization: A
survey. IEEE Transactions on Visualization and Computer
Graphics, 6 (Jan-Feb 2000), 24-43.

[12] Kamada, T. and Kawai, S. 1989. An Algorithm for Drawing
General Undirected Graphs, Information Processing Letters,
31(1989), 7–15.

[13] Lee, B., Plaisant, C., Parr, C., Fekete, J-D., and Henry, N.
2006. Task taxonomy for graph visualization. In Proceedings
of the 2006 AVI workshop on BEyond time and errors.
(Venice, Italy) BELIV 2006, ACM Press, New York, NY,
81-86, DOI= http://doi.acm.org/10.1145/1168149.1168168.

[14] Noack, A. 2003. Energy Models for Drawing Clustered
Small-World Graphs. Technical Report 07/03, Computer
Science Reports, Brandenburg University of Technology at
Cottbus.

[15] Noack. A. 2004. An Energy Model for Visual Graph
Clustering. In Proceedings of the 11th International
Symposium on Graph Drawing (Perugia, Italy, Sep. 21-24),
GD 2003, Springer-Verlag, Berlin, LNCS 2912, 425-436.

[16] Noack. A. 2005 Energy-Based Clustering of Graphs with
Nonuniform Degrees. In Proceedings of the 13th
International Symposium on Graph Drawing (Limerick,
Ireland, Sep. 12-14), GD 2005, Springer-Verlag, Berlin,
LNCS 3843, 309-320.

[17] Sugiyama, K. and Misue, K. 1995 A Simple and Unified
Method for Drawing Graphs: Magnetic-Spring Algorithm. In
Proceedings of the International Workshop on Graph
Drawing, (Princeton, NJ, USA, October 1994), GD’94,
Springer-Verlag, Berlin, LNCS 894, 364-375.

[18] Tejada, E. and Ertl, T. 2005 Large Steps in GPU-based
Deformable Bodies Simulation. Simulation Modeling
Practice and Theory, 13(2005), 703-715.

[19] Yi, J.S., Melton, R. Stasko, J., and Jacko, J. 2005 Dust &
Magnet: multivariate information visualization using a
magnet metaphor. Information Visualization, 4 (2005), 239-
256.

278

http://www.springeronline.com/

	1. INTRODUCTION
	2. RELATED WORK
	2.1 Force-directed Layouts
	2.2 Interactive Layout Reorganization
	2.3 Use of False Elements
	2.4 Evaluation and Design of Graph Visualization Techniques

	3. OUR TOOL
	3.1 Basic Graph Layout
	3.2 Magnets
	3.3 Boundary Shapes
	3.4 Magnet Hierarchy
	3.5 Magnet Intersections
	3.6 Implementation Details

	4. DISCUSSION
	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

