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ABSTRACT 
This paper presents an interactive physics-based technique for the 
exploration and dynamic reorganization of graph layouts that 
takes into account semantic properties which the user might need 
to emphasize. Many techniques have been proposed that take a 
graph as input and produce a visualization solely based on its 
topology, seldom ever relying on the semantic attributes of nodes 
and edges. These automatic topology-based algorithms might 
generate aesthetically interesting layouts, but they neglect 
information that might be important for the user. Among these are 
the force-directed or energy minimization algorithms, which use 
physics analogies to produce satisfactory layouts. They consist of 
applying forces on the nodes, which move until the physical 
system enters a state of mechanical equilibrium. We propose an 
extension of this metaphor to include tools for the interactive 
manipulation of such layouts. These tools are comprised of 
magnets, which attract nodes with user-specified criteria to the 
regions surrounding the magnets. Magnets can be nested and also 
used to intuitively perform set operations such as union and 
intersection, becoming thus an intuitive visual tool for sorting 
through the datasets. To evaluate the technique we discuss how 
they can be used to perform common graph visualization tasks.   

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – graphical user interfaces, interaction styles.  

General Terms 
Design, Human Factors. 

Keywords 
Graph visualization, Interaction 

1. INTRODUCTION 
Graphs are present in many different application areas, ranging 
from biology to social network analysis and software engineering. 
While information organized in graph-like structures can be 

explored textually, through tools such as query languages, this 
usually requires an expert user, being too complex and not 
intuitive enough for most people, who have little experience with 
such instruments. Therefore, many of these areas make use of 
applications that visualize their inherent graphs in order to make it 
easier for their users to grasp and manipulate the information they 
require. 

By far, the most popular and intuitive visual representation of a 
graph is the node-link diagram. A large community of researchers 
is dedicated specifically to the study of how to compute the best 
possible layout. The problem they attempt to solve can be simply 
stated as how to find the geometric positions of the nodes that are 
aesthetically more interesting for the better comprehension of the 
graph and its structure. Its solution, though, has proven to be quite 
complex. 

Different algorithms for the layout of node-link diagrams have 
been created, each favoring certain aesthetic criteria, such as edge 
crossings, edge bends, graph symmetry, etc., in detriment of 
others. Some of these techniques are better for certain 
applications while some are better for others, but all have their 
limitations, which range from computational cost to visual clutter. 
A good source on the field of graph drawing is the book written 
by Di Battista et al. [2]. 

To deal with the limitations of these layout algorithms, many 
approaches have been experimented [11]. While some have 
applied navigation and interaction schemes on the traditional 
layouts, others have built 3D visualization techniques, changed 
from node-link diagrams to alternative visual representations, or 
combined existent techniques into new hybrid ones. 

While some of these techniques might be well suited for certain 
applications, no technique is generally applicable. Also, while 
many techniques can build aesthetically pleasing layouts, few 
take into account the semantic information contained in the 
attributes of the nodes and edges of a graph, focusing only on the 
topological characteristics. Some use interaction tools such as 
filtering, to achieve some visual customization based on the 
semantic information, but very few are attribute-aware and, 
among those one finds that most are too application-specific to be 
generally applicable. 
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The main information associated to a graph is the relationships 
represented by its topology, but it is often the case that the 
attributes represented in its nodes and edges are just as important 
to the user of a graph visualization application, who might be 
missing out important data and even relationships that are not 
explicitly expressed. 
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In this work, we present a physically-based technique for the 
interactive manipulation of graph visualizations. Our technique 
consists of providing the user with virtual magnets associated 
with user-defined criteria, which can be topology or attribute-
based, and that allow the interactive manipulation of the 
visualization of a graph in order to make it semantically more 
interesting and valuable. Magnets can also be used to intuitively 
perform set operations such as union and intersection, becoming a 
visual tool for exploring the datasets, and allowing the user to 
discover new relationships that were previously invisible due to 
the techniques that focused exclusively on the topology. To 
illustrate our technique, we show how it can be applied to perform 
common graph visualization tasks identified by Lee et al. [13].  

In the following section, we present an overview of related works. 
Section 3 describes our approach, and gives some details of its 
implementation. Section 4 illustrates how it can be applied and in 
Section 5 we present our conclusions and draw some comments 
on future work. 

2. RELATED WORK 
The works related to the technique presented in this paper are 
mostly in four subjects: force-directed graph layouts; interactive 
graph layout reorganization; use of “false” elements for layout re-
organization; and evaluation and design of graph visualization 
techniques.  

2.1 Force-directed Layouts 
Force-directed graph layouts are amongst the most popular in 
graph visualization due to their pleasing visual results, relative 
implementation simplicity and flexibility as to the inclusion of 
new aesthetic criteria. The basic idea of a force-directed algorithm 
is to treat the graph as a physical system, assigning forces to the 
nodes and edges, and minimizing its energy until reaching a stable 
layout. The forces will work to rearrange the positions of the 
nodes until the system finds itself in a state of mechanical 
equilibrium. Di Battista et al.’s book [2] presents a good survey of 
force-directed methods.  
One of the first force-directed algorithms was proposed by Eades 
[6]. It takes the intuitive approach of treating the graph as a mass-
spring system, with nodes being steel rings and edges springs that 
connect them. Despite the physical metaphor, it does not aim for 
physical accuracy, not employing Hooke’s law for the springs and 
with forces affecting velocity instead of acceleration. It produces 
visualizations of uniform edge length and allows representation of 
graph symmetry. The algorithm consists of randomly positioning 
the nodes and simply running the simulation for a number of 
iterations, which is one of its drawbacks, since not all graphs 
converge at the same time. 
Many other algorithms extended the basic idea presented by 
Eades. One of those is Kamada and Kawai’s [12], which aims at 
positioning nodes in a way that their geometric distance is equal 
to their graph-theoretic distance. It does so by having the 
simulation assuming that between every two nodes there is a 
spring with length equal to the theoretical distance between them. 
Another interesting algorithm is Davidson and Harel’s [5], which 
introduced the idea of using simulated annealing to minimize the 
system’s energy function, which takes into account vertex 
distribution, edge length and edge crossings. This algorithm can 
be very time consuming, but can produce better results. 

One of the most popular force-directed algorithms is the one 
proposed by Fruchterman and Reingold [8]. This algorithm 
consists on calculating all the forces that attract and repulse 
nodes, at each iteration. Nodes connected by edges exert an 
attraction force between them, while all nodes exert a repulsion 
force on all others. From the forces, the position displacement a 
node will suffer during each iteration is calculated and limited by 
the current value of an attribute (usually used as temperature), 
which is progressively decreased. This algorithm is relatively fast 
and produces nice visual results. 
Another interesting approach is Noack’s LinLog energy model 
[14], which attempts to reveal clusters of highly connected nodes. 
This technique is particularly useful for datasets such as social 
networks, and was proposed in two variations, the node-repulsion 
LinLog model [14][15] and the edge-repulsion LinLog model 
[16]. Both variations produce similar drawings, but the latter 
avoids dense accumulations of nodes with high degrees for graphs 
with non-uniform degrees. 
One interesting property of force-directed algorithms is that most 
of them support the application of constraints. A position 
constraint can be established by forcing nodes to remain within a 
certain region, while other types of constraints can be used if they 
can be expressed with forces. Examples of this include the use of 
magnetic fields to impose orientation constraints [17] and the 
utilization of dummy nodes to force groupings. 
For many years, force-directed algorithms have suffered 
dramatically from a scalability problem: the more nodes and 
edges we have, the slower it is for the system to converge. Thus, 
it was only possible to use these algorithms in real-time with 
smaller graphs due to their high computational cost. However, 
with the advent of faster, multi-core processors and powerful, 
programmable graphic processing units (GPUs) this reality is 
changing fast. Mass-spring algorithms can now deal with 
hundreds of thousands nodes and edges in real-time, and many 
different applications, such as real-time cloth simulation, are 
already making use of that [9, 18]. Recent works on GPU-based 
force-directed layout include Frishman and Tal [7], reporting a 
multi-level graph layout algorithm.  
Aside from the scalability problem, force-directed algorithms also 
suffer greatly from a predictability problem. Two different runs of 
an algorithm over similar (or even the same) input graphs might 
generate two completely different layouts, which is not very 
helpful in allowing the user to create and maintain a mental map 
of the visualization. One approach that has been used to minimize 
this is to run another layout algorithm first, and afterwards 
execute the force-directed technique on that.  

2.2 Interactive Layout Reorganization 
Most graph visualization techniques usually use interaction and 
navigation techniques to explore static, pre-computed layouts. 
Well-known techniques include filtering; fish-eye views; scrolling 
and panning; zooming and even coordination of two or more 
visualizations (see Herman et al. [11], for a wider review on 
navigation and interaction techniques for graph visualizations). 
Very few techniques, though, allow for dynamic interactive 
reorganization of graph layouts. 
Some applications allow for simple layout reorganization by 
letting the user move around nodes in force-directed layouts, 
which will cause an alteration in the balance of energy of the 
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force-directed system, thus triggering a repositioning of the 
nodes, which will move until equilibrium is again reached. 
Another known technique is to find clusters of nodes and 
transform them into cluster-nodes that can be expanded and 
collapsed by the user. Clusters can also be used to perform 
cluster-based semantic zooming, which allows for a level-of-
detail-like approach to the visualization, letting the user 
incrementally explore the graph by zooming in or out. 
Considering the few techniques that allow for dynamic graph 
layout reorganization, we find the work of Henry et al., NodeTrix 
[10], which is a hybrid of matrix and node-link visualizations. 
NodeTrix allows the user to turn clusters of nodes of node-link 
visualizations into matrices, which are then displayed within the 
node-link diagram. The layout itself is computed with the 
previously mentioned LinLog algorithm. 

2.3 Use of False Elements 
The next few related works are not exactly devoted to graph 
layout reorganization, but they introduced ideas that we found 
inspiring and somehow proved the feasibility of using magnets to 
allow users to re-organize visualizations in a more powerful and 
easy way.    
Fidg’t1 is an application developed for the management of social 
networks that includes an interactive visualization tool that allows 
users to iteratively explore their networks by creating tag magnets 
for pictures (from Flickr) or music (from Last.fm), and observing 
how its nodes are attracted or repelled. 
Although devoted to a different data domain (multivariate 
information), the Dust & Magnet information visualization 
technique proposed by Yi et al. [19] also uses a magnet metaphor.  
Finally, it is important to mention that the technique presented in 
our work was partly inspired by Bier and Stone’s Snap-Dragging 
[4], which is an interactive technique that aims at helping the user 
make precise line drawings. 

2.4 Evaluation and Design of Graph 
Visualization Techniques 
Evaluating such a variety of graph layout techniques and 
interaction techniques is a huge problem, because there are both 
perceptual and functional issues involved. Few works deal with 
evaluation of graph visualization techniques. A very useful task 
taxonomy for graph visualizations has been proposed by Lee et al. 
[13]. In their article, the authors provide a list of tasks that users 
might need to perform while using a graph visualization 
application. In Section 4 we will use this taxonomy to evaluate 
how our technique fares when the user tries to execute the defined 
tasks. 

3. OUR TOOL 
The goal of our technique is to aid users in interactively 
reorganizing the layout of a graph to better fit their needs by 
providing them with tools that allow the manipulation of graph 
visualizations based on the topological and semantic attributes 
that better interest them. To do so, we build on the physics 
metaphor of force-directed algorithms by allowing the placement 

                                                                 
1 http://fidgt.com 

of virtual magnets, which attract nodes that fulfil certain user-
defined criteria. While we follow a magnet metaphor, though, 
physical accuracy is not one of our aims. 
In our technique magnets can be placed on the scene in order to 
reorganize the graph. They can be set to attract nodes based on 
their values for certain criteria, which can be topological (such as 
nodes that have a certain degree or that have a path to another 
node with a certain length) or attribute-based (i.e. all users that 
come from the UK). Also, boundary shapes can be applied to 
magnets to keep the nodes they attract bound to certain regions of 
the scene. 

3.1 Basic Graph Layout 
In our technique, the user is given two options for the 
computation of the layout: a mass-spring algorithm similar to 
Eades’s [6] or an adapted version of Fruchterman and Reingold’s 
technique [8]. 
In the first option, the layout of the graph is computed assuming 
that all nodes have equal mass. The parameters of the algorithm, 
such as time step, edge rest length, damping factor and node 
repulsion force can be changed by the user to produce a 
visualization that is more satisfying aesthetically. The rest length 
of the edges can be either a fixed value provided by the user or 
computed based on the degree of the nodes that it links (the 
higher the degree, the longest the length). The layout is dynamic 
and is always being recomputed; therefore, any change in the 
position of a node will trigger a subsequent reorganization of the 
layout. Figure 1 shows a small graph with layout computed using 
this algorithm. 

 
Figure 1. Graph of the largest component (largest connected 
subgraph) of the AVI coauthorship network drawn using a 
mass-spring algorithm. 
In the second option, Fruchterman and Reingold’s technique is 
combined with the Barnes and Hut algorithm [3], and slightly 
adapted to better fit our needs. Our modifications were the 
addition of a small gravitational force that pulls all nodes slightly 
towards the centre of the workspace and the alteration of the 
manner in which the algorithm runs (we re-evaluate it every 
frame instead of running it for a given number of iterations). The 
user can set several parameters, such as time step, damping, a 
constant that is used for the computation of the optimal distance 
between two vertices, maximum attraction force (to make it easier 
for the simulation to reach stability), attraction and repulsion 
exponents and central gravitation factor. Figure 2 shows the same 
graph as Figure 1 computed using this algorithm. 
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Figure 2. Graph of the largest component of the AVI 
coauthorship network drawn using our variation of 
Fruchterman and Reingold’s technique. 
In both cases, Verlet integration is used to compute node positions 
in every frame due to its stability and area preserving properties. 
To allow for easier navigation, the user can pause and resume the 
simulation at any time. 

3.2 Magnets 
Magnets are special objects that can be added to the scene which 
have the ability to attract nodes of a graph that fulfil certain user-
defined criteria. Figure 3 shows how magnets are visually 
represented in the prototype we developed. 

  
Figure 3. Visual representation of a magnet. 

A magnet works by exerting onto each of these nodes an 
attraction force that will progressively move them towards it, 
thereby building a cluster of semantically-related nodes around it. 
When these nodes move, the force-directed layout algorithm 
ensures that all the other nodes that are connected to them by 
edges will be pulled along, reorganizing the whole layout of the 
graph in the process. 
To each magnet users should associate one or more attraction 
criteria, which can be set as requirements of attraction or simply 
criteria. To be attracted a node must fulfil all requirements and at 
least one of the defined criteria. These requirements and criteria 
can be based on the topology of the graph, the attributes of its 
nodes and edges or even other magnets that have been placed on 
the scene. 
Topology-based criteria use the structure of the graph to attract 
nodes. It is possible to attract nodes based on properties such as 
degree, path length (i.e. all nodes that are within a specified path 
length from another node or group of nodes), connected subgraph 
(i.e. subgraphs with a given number of nodes), connected 
components (maximally connected subgraphs with a given 
number of nodes) . Figure 4 shows an example of two magnets 
with topology-based criteria in action. 

 
Figure 4. A small graph with three magnets - one targeting 
nodes of degree 3 (light blue nodes); the second attracting 
nodes of degree 4 (green nodes) and the third one attracting 
nodes with degree greater than 5 (light orange nodes). 
Attribute-based criteria use the semantic properties contained in 
nodes and edges in order to attract nodes. Users can set a magnet 
to attract all the nodes in which a certain property exists, or not 
only exists but is also equal to a certain value or is within a 
certain value range (if it is numerical). Users can do the same for 
edges, with the magnet then attracting the nodes linked by edges 
that fulfil the defined criteria. An example of a magnet with an 
attribute-based criterion can be observed in Figure 5. 

 
Figure 5. Graph of the largest component (largest connected 
subgraph) of the AVI coauthorship network with a magnet set 
to attract authors cited more than once (all nodes that have 
attribute “citationsnb” greater than 1).  
Magnet-based criteria use the sets of attracted nodes of each 
magnet that was included in the scene by the user. With magnet-
based criteria, one can set a magnet to attract all the nodes that 
another magnet also attracts, all the nodes that another magnet 
does not attract, all the nodes that no magnet attracts or all the 
nodes that are attracted by a combination of magnets. This allows 
for set-based operations on the graph visualization, which usually 
will end up in a graph reorganization. 
Each criterion has a properties dialog through which it can be 
properly set up and configured. They can be added, removed and 
edited at any time, with users also being able to add multiple 
criteria and requirements to each magnet. This makes it possible, 
for instance, to set a magnet to attract all nodes that are not 
attracted by any magnet, have degree higher than a certain 
number and include the property that is called x. Figure 6 shows 
an example of a magnet with different types of criteria. 
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Figure 6. Magnet attracting authors with at least two papers 
that have written papers with more than three other authors 
(nodes with the attribute “papersnb” greater than or equal to 
2 and degree greater than 3). 
In case one might wish to perform a union of the set of nodes 
attracted by two or more different magnets, it is possible to 
combine such magnets. The combination operation will create a 
new compound magnet with the combined criteria of the ones 
selected. The new magnet will have its force magnitude set to the 
average of the original ones’, which will be subsequently set to 0. 
Within the physics metaphor, a magnet works simply, on each 
frame, by applying to all attracted nodes a force vector in its 
direction with the specified magnitude. Also, to keep the magnet 
from being overlapped by its attracted nodes and to keep the 
attracted nodes from staying all bundled together too close to each 
other, the magnet also exerts a repulsion force on each of the 
attracted nodes. This repulsion force is the same as with common 
nodes, working like a reverse gravity by being inversely 
proportional to the distance of the node to the magnet and 
proportional to the magnitude of the force of attraction, so that it 
is stronger with the nodes that are near the magnet and weaker 
with the ones that are progressively further away from it. The 
magnitude of the repulsion force can be increased by the user to 
change the minimum distance the nodes ought to have from the 
magnet. 
Occasionally it might be cumbersome to see which nodes that are 
positioned close to a magnet are in fact attracted by it. To deal 
with this situation, it is possible to assign a colour to all the nodes 
that it attracts or to create a boundary shape around the magnet to 
limit the region in which such nodes can move about. 

3.3 Boundary Shapes 
A boundary shape is simply a geometric shape (a circle in our 
current implementation), which can be placed around a magnet 
and have the function of bounding the nodes that such magnet 
attracts to the region that the shape delimits. At the same time that 
all attracted nodes are kept within the boundary shape, all other 
nodes are kept out, with the shape exerting a repulsion force 
similar to the one exerted on the other nodes by the nodes 
themselves (a reverse gravity force). 
To allow for a better distribution of space within a boundary 
shape, the magnitude of the attraction force of the magnet is 
reduced for the nodes that are inside. Also, when a node enters the 
region of a boundary shape, the direction of the force that pulls it 
is “refracted” by the application of Snell’s Law. So, instead of 
there being a force that pulls the nodes straight to the magnet, 

each node is pulled towards a nearby direction, which makes for 
more evenly distributed nodes. Figure 7 shows boundary shapes 
in action. 
Once a node finds itself inside a magnet’s boundary shape, it 
cannot escape that area, unless it is also attracted by another 
magnet that is placed outside such shape. 

 
Figure 7. Graph with boundary shapes. 

3.4 Magnet Hierarchy 
A magnet effectively creates sets of related nodes and ensures that 
they remain near a certain physical region. Occasionally it might 
be useful to refine this set of nodes into subsets. To allow for that, 
it is possible to define magnets that act only on the subset of the 
graph that is already attracted by another magnet. To do this, the 
user must simply create a magnet and define another one as its 
parent. It is interesting to note that children magnets might 
children magnets of their own; creating thus a hierarchy of 
magnets that might be helpful for incremental exploration of a 
graph. Figure 8 illustrates the use of magnet hierarchy to achieve 
a better organization of the layout.  

 
Figure 8. Graph of the CHI conference citations with a 
magnet hierarchy. All nodes within the red boundary shape 
are proceedings of the conferences that were published before 
2000, with the ones inside the beige shape being from after 
1990. 
If the parent magnet does not have a boundary shape, or has one, 
but the child magnet is outside of it, a dashed line in the same 
colour as the parent’s nodes appears between them. If there is a 
boundary shape and the child magnet is within it, no line appears. 
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3.5 Magnet Intersections 

 
Figure 9. Visual representation of an intersecting node. 

Occasionally it may happen that a node fulfils the criteria of two 
or more magnets. In such a case, the node will be attracted to all 
of these magnets and will thus have a tendency to stabilize in the 
middle of them with a bigger lean towards the ones with the 
strongest attraction forces. If there is intersection between 
magnets that have boundary shapes, their position constraints are 
ignored, and they are allowed to escape the region they were 
previously bound to. 
To make the intersections more apparent visually, the common 
nodes are drawn as in Figure 9. The user may also at any time 
choose to display dashed lines from the intersecting nodes to their 
‘parent’ magnets (Figure 10). Each line assumes the colour that 
was defined by the user for the nodes that are attracted by its 
respective magnet. 

 
Figure 11. Largest component of the AVI coauthorship 
network with a magnet that attracts all authors that have 
more than one paper (node attribute “papersnb” greater than 
1) and another that attracts all authors with more than one 
citation (node attribute “citationsnb” greater than 1). 

3.6 Implementation Details 
A proof-of-concept prototype was developed to test and evaluate 
our approach. It was initially developed with Python 2.5 and Qt 
4.3.1, using PyQt and later ported to C++. The prototype takes as 
input GraphML files and displays the graphs with the previously 
described layouts. 

Users are able to insert magnets, whose attributes (including 
shapes and criteria) can be manipulated through a panel on the 
right side of the graphical user interface. Each criterion has its 
own properties dialog, which can be accessed by picking it from 
the selected magnet’s requirement and criteria lists. The prototype 
was built with extensibility in mind, so that the creation of new 
tools and types of criteria is straightforward. 

The panel on the right side of the user interface is used to provide 
layout and magnet options to the user. When no node or magnet is 
selected, information about the graph and the layout configuration 
interface is displayed. If a magnet is selected, the magnet editor is 
launched, allowing the user to set and edit the magnet criteria and 

boundary shape. When the user selects a node, the panel displays 
the attributes of that node. 

As the goal of this prototype was to test our technique, 
performance considerations were not taken into account in the 
development of the application. Therefore, the current 
implementation is completely on software and with only few 
optimizations. Nevertheless, on the machine used to run it, a 
single-core Mobile AMD Athlon 64 3000+ (2.0 GHz) with 2 GB 
of DDR 333 MHz memory and an ATI Radeon 9700 graphics 
card with 128 MB of memory, it was already possible to deal with 
graphs of several hundred nodes and edges at interactive rates. 

4. DISCUSSION 
Lee et al. [13] have proposed a useful task taxonomy for graph 
visualization in which it is defined a list of tasks that are 
commonly performed while exploring a graph. They divide these 
tasks into general low-level tasks, graph-specific tasks and 
complex tasks, with the latter being further categorized into 
topology, attribute-based, browsing and overview tasks. 
To examine how our technique can contribute to the visualization 
of a graph, in this section we show how it can be used to better 
carry out many of the tasks on Lee et al.’s taxonomy. 

Table 1. Low-level tasks inherently covered by our technique 

Task Description 

1. Filter 
Given some conditions on attribute 
values, find data cases satisfying those 
conditions. 

2. Find 
Extremum 

Find data cases possessing an extreme 
value of an attribute over its range within 
the data set. 

3. Sort Given a set of data cases, rank them 
according to some ordinal metric. 

4. Determine 
Range 

Given a set of data cases, rank them 
according to some ordinal metric. 

5. Characterize 
Distribution 

Given a set of data cases and a 
quantitative attribute of interest, 
characterize the distribution of that 
attribute’s values over the set. 

6. Find 
Anomalies 

Identify any anomalies within a given set 
of data cases with respect to a given 
relationship or expectation. 

7. Cluster Given a set of data cases, find clusters of 
similar attribute values. 

8. Correlate 
Given a set of data cases and two 
attributes, determine useful relationships 
between the values of those attributes. 

9. Find Adjacent 
Nodes Given a node, find its adjacent nodes. 

10. Set Operation Given multiple sets of nodes, perform set 
operations on them. 

 
Most of the higher-level tasks are built on combinations of the 10 
general low-level visual analytic tasks described by Amar et al. 
[1] and also three other operations proposed by themselves (with 
one of them being exclusive to graphs). It is interesting to note 
how our technique already inherently deals with several of these 
lower-level tasks. Table 1, partially taken from Lee et al.’s paper, 
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contains a listing and description of the low-level tasks that our 
approach is able to cover. 
As can be clearly seen from Table 1, these tasks can be performed 
through our technique simply by adding magnets to the scene 
with the proper combination of criteria, and allowing the graph to 
reorganize itself. Tools such as magnet boundary shapes and the 
ability to operate on magnets themselves (through magnet 
combination and magnets that have magnet-based criteria) make 
carrying out these tasks a natural fit, with clustering and set 
operations being some of the most natural applications for the 
tools we propose. 
Regarding to graph-specific higher level tasks, our technique also 
provides adequate support to the user in accomplishing several of 
them. In most cases the tasks can be easily carried out by relying 
simply on the placement of magnets with the proper combination 
of topology and attribute-based criteria followed by (if necessary) 
the proper operations on the magnets themselves (such as magnet-
based criteria and magnet combination). 
Lee et al. divide graph complex tasks into topology-based tasks, 
attribute-based tasks, browsing tasks and overview tasks. Our 
technique is especially useful for the first two categories and can 
be easily integrated into applications that provide ways to 
accomplish the other two types of tasks. 
Topology-based tasks were further subdivided into a few 
categories: adjacency, accessibility, common connection and 
connectivity. Adjacency tasks include finding the set of nodes 
adjacent to a node, a node’s degree and the node with the highest 
degree. Accessibility includes issues such as finding all the nodes 
accessible from another one and the set of nodes with distance 
from another node within a certain range. Common connection 
corresponds to finding a set of nodes that are connected to all the 
nodes of a given set, while connectivity includes finding the 
shortest path between two nodes, finding connected components 
(defined by Lee et al. as a maximal connected subgraph) and 
clusters (defined by the same authors as a subgraph of connected 
components whose nodes have high connectivity). 
Attribute-based tasks can work on nodes or edges and include 
operations such as finding the nodes that have a specific attribute 
value or that are linked by edges that have a certain attribute or a 
certain attribute value in a specified range. 
Browsing tasks include operations such as following a given path 
or revisiting a previously visited node. 
Finally, overview tasks correspond to exploratory operations 
performed in order to quickly get an estimate of a certain value, 
such as the size of a graph or subgraph, or patterns that the graph 
tends to have. 
As can be seen from the previous description of the different 
types of tasks, magnets apply directly to topology and attribute-
based tasks. Such tasks can be accomplished simply by creating 
magnets with the proper criteria. Browsing and overview tasks 
can also be helped by the magnets, by making it easier to find 
nodes on the scene and providing the visualization with some 
node position predictability, since magnets can be inserted to 
make sure that nodes that fulfill certain criteria are within a 
certain region. For the tasks that our tools are unable to cover, the 
solution is simply a matter of combining it with other techniques, 
such as fish-eye-like visualizations, overview windows, node 
search, etc. 

One interesting aspect of our technique is that it can be used to 
easily explore graph datasets by building queries through the 
specification of magnets and their criteria, and performing set 
operations on them, becoming thus an intuitive and simplified 
alternative to query languages or filtering operations, which can 
be too complex for most end-users that do not have advanced 
programming and computer skills.  

5. CONCLUSIONS AND FUTURE WORK 
Even though there is a multitude of graph layout algorithms, there 
is no one which fits to all types and sizes of graphs. With the 
work presented in this paper, we aimed at developing a technique 
that would help circumvent this fact by providing the user with 
tools that could allow him to shape a layout into one of his/her 
needs. 
On the contrary of most graph layout techniques, which work 
solely based on the topological structure of the graph, ours also 
takes into account the information contained in attributes of the 
nodes and edges. This allows the user to dispose the graph in a 
layout that can be semantically more interesting. 
Our tools, in great part due to the metaphor we employ, make it 
possible for the user to intuitively navigate through the graph and 
perform many common graph visualization operations.  
One of the biggest drawbacks of  force-directed algorithms is that 
the layouts they produce tend to be unpredictable – different runs 
on similar graphs (or even with the same one) might generate 
completely different layouts, which is quite a hindrance for 
maintaining a mental map of the graph. Our technique helps 
minimize this limitation, allowing for a level of predictability in 
otherwise unpredictable drawings. In two runs of the application 
on the same graph, two magnets will always attract the same 
nodes to the same place. It is not guaranteed that the nodes will be 
at the same exact position, but their general location can be easily 
known, since it is indicated by the users themselves. 
Another interesting aspect of the presented technique is that it is 
not bound to a specific layout algorithm: it can work with any that 
allows for forces to be applied to nodes. 
There is still work to be done in order to improve the technique 
presented in this paper. Amongst the planned work is an efficient 
implementation of the technique using the GPU on top of a more 
sophisticated layout algorithm that more clearly separates clusters 
of highly connected nodes, such as LinLog [14]. This 
implementation will allow the use of the technique with larger 
and more complex datasets, permitting its validation and better 
adaptation for huge graphs, which have shown up quite frequently 
lately due to the growing interest in the visualization of social 
networks. 
Some new features are also planned for the technique itself, such 
as new types of criteria, arbitrarily-shaped magnet boundaries, the 
possibility of making a magnet work only on the nodes that are 
within a certain area (i.e. with a certain radius around it), and the 
ability to collapse the nodes attracted by a magnet into an 
expandable and collapsible cluster-node to allow for a better 
iterative visualization. Also planned is a special magnet that 
applies weighed forces to the nodes it attracts, allowing for a 
visual sorting of such nodes (the closer the node is to the magnet, 
the more it has of a certain property). This sorting magnet would 
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allow operations such as visually browsing by date, alphabetically 
or any numerical value. 
Planned work also includes user experiments for better validation 
of the technique as well as its integration into a complete graph 
visualization application that supports other features such as node 
search, overview windows, coordination with different 
visualizations, filtering and fish-eye-like views. 
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